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UNIT-1 : Limit and Differentiation

”The concept of a limit is a central idea that distinguishes calculus from algebra and
trigonometry. It is fundamental to finding the tangent to a curve or the velocity of an
object.”

BASIC DEFINITIONS:

• Interval: -A set of the following forms is called as interval
(1) {x ∈ R|a ≤ x ≤ b} = [a, b]
(2) {x ∈ R|a < x < b} = (a, b)
(3) {x ∈ R|a ≤ x < b} = [a, b)
(4) {x ∈ R|a < x ≤ b} = (a, b]

• δ Neighborhood or Neighborhood:- An interval around a point a ∈ R is said to be its neigh-
borhood if it is of the form for some δ > 0
{x ∈ R|a− δ < x < a+ δ} = (a− δ, a+ δ)

• Deleted Neighborhood:- An interval around a point a ∈ R is said to its be deleted neighbor-
hood if it is of the form for some δ > 0
{x ∈ R|a− δ < x < a+ δ, x ̸= a} = (a− δ, a+ δ) ∼ a

• Modulus function: A function defined on set of real numbers R which gives the absolute
value(positive value) of a number is called modules function. It is defined as

|x| =
{

x, if x is non negative;
−x, if x is negative.

e.g., |2| = 2, | − 2| = 2, |0| = 0

• Integer Part Function: A function defined on set of real numbers R which gives the integer
part of the number is called integer part function. It is defined as
[x] = nearest integer less than x.
e.g., [3.234] = 3, [−2.234] = −2, [π] = 3, [e] = 2.

• Even function: A function f(x) is said to be even function if f(−x) = f(x), for all x.
e.g., f(x) = x2

• Odd function: A function f(x) is said to be odd function if f(−x) = −f(x) for all x.
e.g., f(x) = x

1.1 Limit: Definition Let f(x) be defined on an open interval about x0, except possibly at
a itself. If f(x) gets arbitrarily close to L for all x sufficiently close to a, we say that f
approaches the limit L as x approaches a. Mathematically,

we can write,

lim
x→a

f(x) = L
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The precise definition of Limit:-
The statement

lim
x→a

f(x) = L

means that for every ϵ > 0 ∃δ > o such that

|f(x)− L| < ϵ whenever x ∈ (a− δ, a+ δ) ∼ {a}

• Right hand limit and Left hand limit:- There are two kind of limits over a real line.

Namely, Right hand limit and Left hand limit.
Over the line there are two directions to approach any point, from left to the point and from
right to the point.
These limits are defined as follows
we mean by a left limit

lim
x→a−

f(x) = L

For every ϵ > 0, ∃ δ > 0 such that

|f(x)− L| < ϵ whenever x ∈ (a− δ, a)

And Similarly,we mean by a right limit

lim
x→a+

f(x) = L

For every ϵ > 0, ∃ δ > 0 such that

|f(x)− L| < ϵ whenever x ∈ (a, a+ δ)

1.2 Working Rules and Simple Examples of Limit

(1) lim
x→a

[kf(x)] = k lim
x→a

f(x)

(2) lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

(3) lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

(4) lim
x→a

[f(x)× g(x)] = lim
x→a

f(x)× lim
x→a

g(x)

(5) lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
, provided that lim

x→a
g(x) ̸= 0

EXAMPLES:-

(1) lim
x→2

(4) = 4

(2) lim
x→2

(5x− 3)

= lim
x→2

(5x)− lim
x→2

3 = 5× lim
x→2

x− 3 = 5× 2− 3 = 10− 3 = 7

(3) lim
x→2

(3x+ 2)

= lim
x→2

(3x) + lim
x→2

2 = 3× lim
x→2

x+ 2 = 3× 2 + 2 = 6 + 2 = 8
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1.3 Limit of a Polynomial Function:-
A Polynomial Function is of the type

p(x) = a0 + a1x+ a2x
2 + a3x

3 + .........+ an−1x
n−1 + anx

n

where a0, a1, ....., an are real numbers.

The limit of the polynomial function is defined as follows

lim
x→a

p(x) =

= lim
x→a

(a0 + a1x+ a2x
2 + a3x

3 + .........+ an−1x
n−1 + anx

n)

= lim
x→a

(a0) + lim
x→a

(a1x) + lim
x→a

(a2x
2) + lim

x→a
(a3x

3) + .........+ lim
x→a

(an−1x
n−1) + lim

x→a
(anx

n)

= lim
x→a

(a0) + a1 lim
x→a

x+ a2 lim
x→a

x2 + a3 lim
x→a

x3 + .........+ an−1 lim
x→a

xn−1 + an lim
x→a

xn

= a0 + a1a+ a2a
2 + a3a

3 + .........+ an−1a
n−1 + ana

n

= p(a)

Hence, the

lim
x→a

p(x) = p(a)

• Examples:-

1. Evaluate lim
x→2

(3x2 + x+ 1)

Soln: Here we have p(x) = 3x2 + x+ 1
And we know that lim

x→a
p(x) = p(a)

⇒ lim
x→2

(3x2+x+1) = lim
x→2

(3x2)+ lim
x→2

(x)+ lim
x→2

(1) = 3 lim
x→2

(x2)+ lim
x→2

(x)+1 = 3(2)2+2+1 = 15

2. Evaluate lim
x→2

(−x2 + 5x− 2)

Soln: Here, we have p(x) = −x2 + 5x− 2
Hence, lim

x→2
(−x2 + 5x− 2) = −(2)2 + 5(2)− 2 = −4 + 10− 2 = 4

3. Evaluate lim
x→−2

(x3 − 2x2 + 4x+)

Soln: Here, we have p(x) = x3 − 2x2 + 4x+ 8
Hence, lim

x→−2
(x3 − 2x2 + 4x+) = (−2)3 − 2(−2)2 + 4(−2) + 8 = −8− 8− 8 + 8 = −16

4. Evaluate lim
x→6

8(t− 5)(t− 7)

Soln: Here we have p(t) = 8(t− 5)(t− 7) = 8(t2 − 12t+ 35) which is a polynomial in t.
Hence, the given limit is p(6) = 8(62 − 12(6) + 35) = 8(36− 72 + 35) = −8

1.4 Limit of a Rational Function:-

A rational function is the function of the form f(x) =
p(x)

q(x)
, q(x) ̸= 0,∀x
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The limit of the rational function is given by

lim
x→a

f(x) = lim
x→a

p(x)

q(x)
=

lim
x→a

p(x)

lim
x→a

q(x)
, provided lim

x→a
q(x) ̸= 0 [∵ By the working rule of limit.]

Further, if p(x) and q(x) are polynomials then, we have

lim
x→a

f(x) = lim
x→a

p(x)

q(x)
=

p(a)

q(a)

• Examples:-
1. Evaluate lim

x→2

x+ 3

x+ 6

Soln: Here we have f(x) =
x+ 3

x+ 6
comparing that to the standard form f(x) =

p(x)

q(x)
of the rational

function, we get
p(x) = x+ 3 and q(x) = x+ 6
Using the limit rule of rational function we have,

lim
x→2

x+ 3

x+ 6
=

lim
x→2

(x+ 3)

lim
x→2

(x+ 6)
=

2 + 3

2 + 6
=

5

8

2. Evaluate lim
x→5

4

x− 7

Soln: Here we have

lim
x→5

4

x− 7
=

4

5− 7
=

4

−2
= −2

3. Evaluate lim
y→−5

y2

5− y

Soln: Here we have

lim
y→−5

y2

5− y
=

(−5)2

5− (−5)
=

25

10
=

5

2

• Special type of rational function:-

lim
x→a

xn − an

x− a
= nan−1

Example 1. Find lim
x→1

x6 − 1

x8 − 1

Soln:- Using the above special method directly.
we get,
The given limit as

lim
x→1

x6 − 1

x8 − 1
= lim

x→1

x6−1
x−1

x8−1
x−1

=
6(1)5

8(1)7
=

6

8
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Example 2. Find lim
x→2

x5 − 32
√
x−

√
2

Soln:- Here, the given function is a rational function whose limit is evaluated as

lim
x→2

x5 − 32
√
x−

√
2
=

lim
x→2

(x5 − 32)

lim
x→2

(
√
x−

√
2)

But, here lim
x→2

(x5 − 32) = lim
x→2

(
√
x−

√
2) = 0

Here,
we can rewrite the given limit as follows

lim
x→2

(x5−32)
(x−2)

(
√
x−

√
2)

(x−2)

=
lim
x→2

(x5−25)
(x−2)

lim
x→2

(x1/2−21/2)
(x−2)

=
5(2)4

(1/2)(2)1/2−1
=

5 · 25

2−1/2
= 5(32)(

√
2) = 160

√
2

Example 3. Find lim
h→0

√
x+ h−

√
x

h

Soln:- Here, the given limit lim
h→0

√
x+ h−

√
x

h

= lim
h→0

√
x+ h−

√
x

h
×

√
x+ h+

√
x√

x+ h+
√
x

[Multiplying denominator and numerator by conjugate surds]

= lim
h→0

(
√
x+ h−

√
x)(

√
x+ h+

√
x)

h(
√
x+ h+

√
x)

= lim
h→0

(x+ h− x)

h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

=
lim
h→0

(1)

lim
h→0

(
√
x+ h+

√
x)

=
1√

x+ 0 +
√
x

=
1

2
√
x
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Example 4. lim
x→2

x3 − 3x2 + 5x− 6

x3 − 8

Soln:- lim
x→2

x3 − 3x2 + 5x− 6

x3 − 8
Here, 23 − 3 · 22 + 5 · 2− 6 = 8− 12 + 10− 6 = 18− 18 = 0 so x− 2 is one of its factor.
Hence, x3 − 3x2 + 5x− 6
= x3 − 2x2 − x2 + 2x+ 3x− 6
= x2(x− 2)− x(x− 2) + 3(x− 2)
= (x− 2)(x2 − x+ 3)

Also, x3 − 8 ⇒ 22 − 8 = 0 hence, x− 2 is one of its factor.
x3 − 8 = (x− 2)(x2 + 2x+ 4)

So, lim
x→2

x3 − 3x2 + 5x− 6

x3 − 8

= lim
x→2

(x− 2)(x2 − x+ 3)

(x− 2)(x2 + 2x+ 4)

= lim
x→2

x2 − x+ 3

x2 + 2x+ 4

=
22 − 2 + 3

22 + 2 · 2 + 4
=

5

12

Example-5. lim
x→1

x6 − 1

x15 − 1
(x ∈ R− {1})

Soln:- Here, for x6 − 1 ⇒ 16 − 1 = 0 and for x15 − 1 ⇒ 115 − 1 = 0

x6 − 1 = (x− 1)(x5 + x4 + x3 + x2 + x+ 1)

and x15 − 1 = (x− 1)(x14 + x13 + ......+ x+ 1)

Hence, lim
x→1

x6 − 1

x15 − 1

= lim
x→1

(x− 1)(x5 + x4 + x3 + x2 + x+ 1)

(x− 1)(x14 + x13 + ......+ x+ 1)

=
6(1)5

15(1)14
= 6/15 = 3/5

Example-6. lim
x→2

x2 − 4√
x+ 2−

√
3x− 2

Soln:- lim
x→2

x2 − 4√
x+ 2−

√
3x− 2

= lim
x→2

(x− 2)(x+ 2)√
x+ 2−

√
3x− 2

·
√
x+ 2 +

√
3x− 2√

x+ 2 +
√
3x− 2

= lim
x→2

(x− 2)(x+ 2)(
√
x+ 2 +

√
3x− 2)

x+ 2− 3x+ 2

= lim
x→2

(x− 2)(x+ 2)(
√
x+ 2 +

√
3x− 2)

4− 2x
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= lim
x→2

(x− 2)(x+ 2)(
√
x+ 2 +

√
3x− 2)

−2(x− 2)

= lim
x→2

(x+ 2)(
√
x+ 2 +

√
3x− 2)

−2

=
(2 + 2)(

√
2 + 2 +

√
6− 2)

−2
= −4

Example-7. lim
x→3

x
3
2 − 3

3
2

x− 3

Sol.: lim
x→3

x3/2 − 33/2

x− 3

=
3

2
(3)

3
2
−1 =

3

2
(3)

1
2 =

3
√
3

2

1.5 Limit of Trigonometric Function:-

There are basically two main trigonometric functions.
Namely, sin and cos,

where sin θ is defined as ratio of opposite side to the angle θ and hypotonus
and cos θ is defined as ratio of adjacent side to the angle θ and hypotonus
Here we consider the following basic results of trigonometry without any justification.

(1) lim
x→0

sin x

x
= 1

(2) lim
x→0

tan x

x
= 1

(3) 1 + cosx = 2 cos2 x
2

(4) 1− cos x = 2 sin2 x
2

(5) sinx = 2 sin x
2
cos x

2

(6) sin2 x+ cos2 x = 1

EXAMPLES :

1. lim
x→0

1− cos x

x2

Soln:- Here lim
x→0

1− cosx

x2

= lim
x→0

2 sin2 x
2

x2

= lim
x→0

2
(
sin x

2

)2
x2
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= lim
x→0

2

(
sin x

2

x

)2

= lim
x→0

2

(
sin x

2
x
2
× 2

)2

= lim
x→0

2

4

(
sin x

2
x
2

)2

=
2

4
lim
x→0

(
sin x

2
x
2

)2

=
1

2

(
lim
x→0

sin x
2

x
2

)2

=
1

2
(1)2

=
1

2

2. lim
x→π

2

(secx− tanx)

Soln:- Here lim
x→π

2

(secx− tanx)

lim
x→π

2

(secx− tanx) =
1

0
− 1

0
, which is not defined so we have to convert given limit in to

simple forms, i.e., in terms of sin and cos functions.

= lim
x→π

2

(
1

cosx
− sinx

cosx

)
= lim

x→π
2

(
1− sinx

cosx

)
= lim

x→π
2

(
1− sinx

cosx

)
From the trigonometric identity, sinθ +cos2 θ = 1, we have

cos x =
√
1− sin2 x

Using this the above limit is

= lim
x→π

2

(
1− sinx√
1− sin2 x

)

= lim
x→π

2

(
1− sin x√

(1− sin x)(1 + sin x)

)

= lim
x→π

2

√
1− sin x√
1 + sin x

= lim
x→π

2

√
1− sin x

1 + sinx

=

√
1− 1

1 + 1

=

√
0

2
= 0
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3. lim
x→0

tanx− sin x

x3

Soln:- Here lim
x→0

tanx− sinx

x3

= lim
x→0

(
sinx

cosx
− sinx

)
x3

= lim
x→0

sinx

(
1

cos x
− 1

)
x3

= lim
x→0

sinx

(
1− cosx

cosx

)
x3

= lim
x→0

sinx (1− cosx)

x3cos x

= lim
x→0

(1− cosx)

x2
× lim

x→0

sinx

x
× lim

x→0

1

cos x

= lim
x→0

(1− cosx)

x2
× 1× 1

1

= lim
x→0

(1− cosx)

x2

= lim
x→0

(
2 sin2 x

2

)
x2

= lim
x→0

2

(
sin x

2

x

)2

= lim
x→0

2

(
sin x

2
x
2
· 2

)2

= lim
x→0

2

4

(
sin x

2
x
2

)2

=
2

4
lim
x→0

(
sin x

2
x
2

)2

=
1

2
(1)2

=
1

2

4. lim
x→0

cosecx− cotx

x

Soln:- Here, lim
x→0

cosecx− cotx

x

= lim
x→0

(
1

sin x
− cos x

sin x

)
x

= lim
x→0

(
1− cosx

sin x

)
x
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= lim
x→0

(
2 sin2 x

2

sin x

)
x

= lim
x→0

2 sin2 x
2

x
sin x

x
× x

= lim
x→0

2 sin2 x
2

x2
× lim

x→0

1
sinx

x

= lim
x→0

2 sin2 x
2

x2
× 1

1

= lim
x→0

(
2 sin2 x

2

)
x2

= lim
x→0

2

(
sin x

2

x

)2

= lim
x→0

2

(
sin x

2
x
2
· 2

)2

= lim
x→0

2

4

(
sin x

2
x
2

)2

=
2

4
lim
x→0

(
sin x

2
x
2

)2

=
1

2
(1)2

=
1

2

5. lim
x→π

1 + cos x

tan2 x

Soln:- Here,lim
x→π

1 + cosx

tan2 x

= lim
x→π

1 + cos x
sin2 x
cos2 x

= lim
x→π

(1 + cos x)cos2 x

sin2 x

= lim
x→π

(1 + cos x)cos2 x

1− cos2 x

= lim
x→π

(1 + cos x)cos2 x

(1− cos x)(1 + cos x)

= lim
x→π

cos2 x

(1− cos x)

=
(−1)2

(1− (−1))

=
1

1 + 1

=
1

2
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1.6 Differentiation: Definition

Consider y = f(x), a function of independent variable x, then its differentiation with respect
x is defined as a limit

lim
h→0

f(x+ h)− f(x)

h
. And it is denoted by any of the notations f ′(x),

dy

dx
,
df

dx
or y1

1.7 Simple examples of Differentiation

Ex.1 Obtain
d

dx
x4 by definition.

Soln:- Here f(x) = x4,
d

dx
x4 = lim

h→0

(x+ h)4 − x4

h

= lim
h→0

x4 + 4x3h+ 6x2h2 + 4xh3 + h4 − x4

h

= lim
h→0

4x3h+ 6x2h2 + 4xh3 + h4

h

= lim
h→0

4x3 + 6x2h+ 4xh2 + h3

= 4x3

Ex.2 Obtain
d

dx
(
√
x) by definition.

Soln:- Here f(x) =
√
x,

d

dx
(
√
x) = lim

h→0

√
x+ h−

√
x

h

= lim
h→0

√
x+ h−

√
x

h
×

√
x+ h+

√
x√

x+ h+
√
x

[Multiplying denominator and numerator by conjugate surds]

= lim
h→0

(
√
x+ h−

√
x)(

√
x+ h+

√
x)

h(
√
x+ h+

√
x)

= lim
h→0

(x+ h− x)

h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

=
lim
h→0

(1)

lim
h→0

(
√
x+ h+

√
x)
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=
1√

x+ 0 +
√
x

=
1

2
√
x

• Formulas of Derivatives of Trigonometric Functions:-

f(x) f ′(x)

sinx cosx

cosx − sinx

tanx sec2 x

secx secx tanx

cosecx −cosecx cotx

cotx −cosec2x

• Formulas of Derivatives of other standard Functions:-

f(x) f ′(x)

log x
1

x

ex ex

ax ax log a

1.8 Working Rules of Differentiation

• Derivative of constant

If f has the constant value f(x) = c, then
df

dx
=

d

dx
(c) = 0.

Examples:-
1. If f(x) = 8, then

df

dx
=

d

dx
(8) = 0.
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2. If f(x) = −π

2
then

df

dx
=

d

dx

(
−π

2

)
= 0.

• Power Rule of derivative.

If n the any real number for f(x) = xn, then
df

dx
=

d

dx
(xn) = nxn−1.

Examples:-
1. Interpreting the above Rule

f(x) x−2 x−1 x0 x1 x2 ....
f ′(x) −2x−3 −x−2 0 1 2x ....

2. Find
d

dx
x5/2 and

d

dx
x7/2.

Here, by using the power rule of derivative,
we have,

d

dx
x5/2 = 5

2
x5/2−1 = 5

2
x3/2

Similarly,

d

dx
x7/2 = 7

2
x7/2−1 = 7

2
x5/2

• Constant Multiple Rule.

If u(x) is a differentiable function, and c is a constant,then
d(cu)

dx
=

d

dx
(cu)) = c

du

dx
.

Examples:-
1. Differentiate f(x) = 2x5.

Here, f(x) is the constant multiple(i.e., 2) of the function x5,

⇒ d

dx
f(x) =

d

dx
(2x5) = 2

d

dx
x5 = 2 · (5x4) [∵ By using the power rule]
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• Derivative Sum Rule

If u and v are differentiable functions of x, then
their sum is differentiable and its derivative is given by the rule

d

dx
(u+ v) =

du

dx
+

dv

dx
.

Examples:-
1. Find the derivative of y = x4 + 12x

Here,
dy

dx
=

d

dx
(x4 + 12x)

=
d

dx
(x4) +

d

dx
(12x) [Sum Rule of Derivative]

= 4x3 + 12
d

dx
(x) [By Power Rule]

= 4x3 + 12 [By Power Rule]

2. Derivative of Polynomial Function:-

Consider the standard form of the polynomial function
p(x) = a0 + a1x+ a2x

2 + a3x
3 + .........+ anx

n

whose derivative is given by

p′(x) =
d

dx
(p(x)) =

d

dx
(a0) +

d

dx
(a1x) +

d

dx
(a2x

2) +
d

dx
(a3x

3) + .........+
d

dx
(anx

n)

p′(x) =
d

dx
(p(x)) =

d

dx
(a0) + a1

d

dx
(x) + a2

d

dx
(x2) + a3

d

dx
(x3) + .........+ an

d

dx
(xn)

. [∵ By using the constant multiple rule]

p′(x) =
d

dx
(p(x)) = (0) + a1(1) + a2(2x) + a3(3x

2) + .........+ an(nx
n−1)

. [∵ By using the power rule]

p′(x) =
d

dx
(p(x)) = a1 + 2a2x+ 3a3x

2 + .........+ nanx
n−1

3. Find
d

dx

(
x3 + 4

3
x2 − 5x+ 1

)
d

dx

(
x3 + 4

3
x2 − 5x+ 1

)
=

d

dx
(x3) +

d

dx

(
4
3
x2
)
− 5

d

dx
(x) +

d

dx
(1) = 3x2 + 8

3
x− 5
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• Derivative of Product

If u and v are two differentiable functions, then
d

dx
(uv) = u

dv

dx
+ v

du

dx
.

Examples:-
1. Differentiate y = (x2 + 1)(x3 + 3)

Here, y = (x2 + 1)(x3 + 3)

⇒ dy

dx
=

d

dx
{(x2 + 1)(x3 + 3)}

= {(x2 + 1)
d

dx
(x3 + 3) +

d

dx
(x2 + 1)(x3 + 3)}

= (x2 + 1)(3x2) + (2x)(x3 + 3)
= 3x4 + 3x2 + 2x4 + 6x
= 5x4 + 3x2 + 6x

2. Differentiate y = (x− 1)(x2 + x+ 1)
Here, y = (x− 1)(x2 ++x+ 1)

⇒ dy

dx
=

d

dx
{(x− 1)(x2 + x+ 1)}

= {(x− 1)
d

dx
(x2 + x+ 1) +

d

dx
(x− 1)(x2 + x+ 1)}

= (x− 1)(2x) + (1)(x2 + x+ 1)
= 2x2 − 2x+ x2 + x+ 1
= 3x2 − x+ 1

• Derivative of Quotient

If u and v are two differentiable functions, then

d

dx

(u
v

)
=

v
du

dx
− u

dv

dx
v2

.

Examples:-

• Find
d

dx

(
x

1− x

)
)

Here,
d

dx

(
x

1− x

)
=

d
dx
(x)(1− x)− x d

dx
(1− x)

(1− x)2

=
1 · (1− x)− x(−1)

(1− x)2
=

1

(1− x)2
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1.9 Chain Rules of Differentiation (Derivative of a Composite Function:)

”In this section we are going to discuss about the differentiation of the functions
which are combination(mathematically composition) of two or more than two func-

tions. e.g.,

√
1− x

1 + x
, sin(x2 + 1)”

Definition: Composite function:-
If f : A → B and g : B → C then their composition gof : A → C is defined as
gof(x) = g(f(x))

Note:- Here we can not define the composition fog

Now, we see that how to find the derivative of such function.

If f(x) and g(x) are to differentiable functions and their composition gof is defined then
its derivative is given by the following formula

d

dx
[gof ] = g′(f(x)) · f ′(x)

For problems points of view, one can consider new label for inner function in this case
f(x),
let f(x) = u this gives
gof(x) = g(f(x)) = g(u)

Here,
d

dx
[gof(x)] =

d

dx
[g(u)] =

d

du
{g(u)} · du

dx

Examples:-

1. Find
dy

dx
if y = sin x2.

Here,
Let us denote u = x2

So, y = sin u and u = x2

dy

dx
=

dy

du
· du
dx

=
d(sinu)

du

d(x2)

dx

= cos u · 2x = 2x · cos x2

2. Find
dy

dx
if y = sin2 x.

Here,
Let us denote y = (sin x)2 = u2

So, y = u2 and u = sin x
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dy

dx
=

dy

du
· du
dx

=
d(u2)

du

d(sinx)

dx

= 2u · cosx = 2 sinx cosx

• Find derivative of following function w.r.t x.

Ex:-1. x3 + 3x + 33

Soln:- Here, we want to find
d

dx
(x3 + 3x + 33)

d

dx
(x3 + 3x + 33)

=
d

dx
(x3) +

d

dx
(3x) +

d

dx
(33)

=
d

dx
(x3) +

d

dx
(3x) +

d

dx
(33)

= 3x2 + 3x log 3 + 0
= 3x2 + 3x log 3

Ex:-2. x sin x

Soln:- Here, we want to find
d

dx
(x sin x)

d

dx
(x sinx)

=
d

dx
(x) sin x+ x

d

dx
(sinx) [∵ d

dx
(uv) = u

dv

dx
+ v

du

dx
]

= 1 · sin x+ x cos x

= sin x+ x cosx

Ex:-3
tanx

x

Soln:- Here, we want to find
d

dx

(
tanx

x

)
d

dx

(
tanx

x

)

=
x
d

dx
(tanx)− tanx

d

dx
(x)

x2
[∵ d

dx

(u
v

)
=

v
du

dx
− u

dv

dx
v2

.]

=
x sec2 x− tanx

x2

Ex-4 e2x(ex − e−x)

Soln:- Here, we have to find
d

dx
(e2x(ex − e−x))

=
d

dx
(e2xex − e2xe−x)

=
d

dx
(e3x)− d

dx
(ex)
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= e3x
d

dx
(3x)− ex

= 3e3x − ex

Ex:-5 log10(x
2 + 1)

Soln:- Here, we have to find
d

dx
(log10(x

2 + 1))

d

dx
(log10(x

2 + 1))

=
d

dx

(
loge(x

2 + 1)

loge 10

)
=

1

loge 10

d

dx
(loge(x

2 + 1))

=
1

loge 10

(
1

x2 + 1

)
d

dx
(x2 + 1)

=
1

loge 10

(
2x

x2 + 1

)

Ex:-6 eax

Soln:- Here, we have to find
d

dx
(eax)

d

dx
(eax) = eax

d

dx
(ax) = eax a = aeax

EX:-7 sin3 x

Soln:- Here, we want to find
d

dx
(sin3 x)

d

dx
(sin3 x)

= 3 sin2 x · d

dx
(sinx)

= 3 sin2 x · cosx

Ex:-8
tan 3x

3x

Soln:- Here, we want to find
d

dx

(
tan 3x

3x

)
d

dx

(
tan 3x

3x

)

=
3x

d

dx
(tan 3x)− tan 3x

d

dx
(3x)

(3x)2
[∵ d

dx

(u
v

)
=

v
du

dx
− u

dv

dx
v2

.]
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=
3x(sec2 3x

d

dx
(3x))− tan 3x(3x log 3)

(3x)2

=
3x · 3(sec2 3x)− tan 3x(3x log 3)

(3x)2

=
3x(3 sec2 3x− tan 3x log 3)

(3x)2

=
(3 sec2 3x− tan 3x log 3)

3x

1.10 Derivative of the Inverse Functions:-
Here we consider the following two formulas:-

• d

dx
(sin−1 x) =

1√
1− x2

• d

dx
(cos−1 x) =

−1√
1− x2

Ex:-1 Find
d

dx

(
sin−1 x

a

)
Soln : − Here, we want to find

d

dx

(
sin−1 x

a

)
=

1√
1− (

x

a
)2

· d

dx

(x
a

)

=
1√

1− (
x2

a2
)

· d

dx

(x
a

)

=
a√

a2 − x2
· 1

a

d

dx
(x)

=
1√

a2 − x2

Ex:-2 Find
d

dx
(cos−1(4x3 − 3x))

Soln : − Here, we want to find
d

dx
(cos−1(4x3 − 3x))

=
−1√

1− (4x3 − 3x)2
d

dx
(4x3 − 3x)

=
−1√

1− (4x3 − 3x)2
(
d

dx
(4x3)− d

dx
(3x))

=
−1√

1− (4x3 − 3x)2
(4

d

dx
(x3)− 3

d

dx
(x))
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=
−1√

1− (4x3 − 3x)2
(4(3x2)− 3)

=
−3(4x2 − 1)√
1− (4x3 − 3x)2

1.11 Derivative of an Implicit Functions:-

Sometimes when y is a function of x which can not be explicitly given in the form y = f(x),
but they are related by F (x, y) = 0. i.e., F (x, f(x)) = 0.
e.g., x2 + y2 = xy.

Exercise:- Find
dy

dx
, if

Ex.1. x3 + y3 = 3axy

Soln : − Here we want find
dy

dx
from the given equation x3 + y3 = 3axy

Applying
d

dx
on both sides of the equation x3 + y3 = 3axy, we get

⇒ d

dx
(x3 + y3) =

d

dx
(3axy)

⇒ d

dx
(x3) +

d

dx
(y3) = 3a

d

dx
(xy)

⇒ 3x2 + 3y2
dy

dx
= 3a

(
d

dx
(x)y + x

d

dx
(y)

)
⇒ x2 + y2

dy

dx
= a

(
1 · y + x

dy

dx
)

)
⇒ x2 + y2

dy

dx
= a

(
y + x

dy

dx
)

)
⇒ y2

dy

dx
− ax

dy

dx
= ay − x2

⇒ y2
dy

dx
− ax

dy

dx
= ay − x2

⇒ (y2 − ax)
dy

dx
= (ay − x2)

⇒ dy

dx
=

ay − x2

y2 − ax

Ex.2. x+ y = sin xy

Soln : − Here we want find
dy

dx
from the given equation x+ y = sinxy

Applying
d

dx
on both sides of the equation x+ y = sin xy, we get

⇒ d

dx
(x+y) =

d

dx
(sinxy)

⇒ d

dx
(x) +

d

dx
(y) = cosxy

d

dx
(xy)
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⇒ d

dx
(x) +

d

dx
(y) = cosxy

d

dx
(xy)

⇒ 1 +
dy

dx
= cos xy

(
d

dx
(x)y + x

d

dx
(y)

)
⇒ 1 +

dy

dx
= y cosxy

d

dx
(x) + x cosxy

d

dx
(y)

⇒ 1 +
dy

dx
= y cosxy + x cos xy

dy

dx

⇒ 1 +
dy

dx
= y cosxy + x cos xy

dy

dx

⇒ dy

dx
− x cosxy

dy

dx
= y cos xy − 1

⇒ dy

dx
(1− x cos xy) = y cos xy − 1

⇒ dy

dx
=

y cosxy − 1

1− x cos xy

Ex.3. ex + ey = ex+y

Soln : − Here we want find
dy

dx
from the given equation ex + ey = ex+y

Applying
d

dx
on both sides of the equation ex + ey = ex+y, we get

⇒ d

dx
(ex + ey) =

d

dx
(ex+y)

⇒ d

dx
(ex) +

d

dx
(ey) = ex+y d

dx
(x+ y)

⇒ ex + ey
dy

dx
= ex+y

(
d

dx
(x) +

d

dx
(y))

)
⇒ ex + ey

dy

dx
= ex+y

(
1 +

dy

dx

)
⇒ ey

dy

dx
− ex+y dy

dx
= ex+y − ex

⇒ (ey − ex+y)
dy

dx
= ex+y − ex

⇒ dy

dx
=

ex+y − ex

ey − ex+y

1.12 Derivative of a Function in Parametric form:-

A form of the function F (x, y) = 0 by the equations x = f(t) and y = g(t) is known as
parametric form.
Suppose x = f(t) and y = g(t) both are differentiable.
Then
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dy

dx
=

dy/dt

dx/dt

e.g., (i) x = t, y = t2 + 1, (ii) x = sin t, y = cos t

Exercise:- Find
dy

dx
for the following:

Ex.1. x = cos3 t, y = sin3t. t ∈ (0, π
2
)

Soln : − Here, the given equations are in parametric form, t is a parameter.

x = cos3 t, y = sin3 t

So, here
dy

dx
=

dy/dt

dx/dt

Next,y = sin3 t ⇒ dy

dt
=

d

dt
(sin3 t) = 3 sin2 t · d

dt
(sin t) = 3 sin2 t · cos t

And

x = cos3 t ⇒ dx

dt
=

d

dt
(cos3 t) = 3 cos2 t · d

dt
(cos t) = 3 cos2 t · (− sin t) = −3 cos2 t · sin t

So,
dy

dx
=

3 sin2 t · cos t
−3 cos2 t · sin t

=
sin t

− cos t
= − tan t

Ex.2. x = a(1− cos θ), y = a(θ − sin θ). a ̸= 0, θ ∈ (0, π)

Soln : − Here, the given equations are in parametric form, θ is a parameter.

x = a(1− cos θ), y = a(θ − sin θ)

So, here
dy

dx
=

dy/dθ

dx/dθ

Next,y = a(θ − sin θ) ⇒ dy

dt
=

d

dt
(a(θ − sin θ)) = a(1− cos θ)

And

x = a(1− cos θ) ⇒ dx

dt
=

d

dt
(a(1− cos θ)) = a(0− (− sin θ)) = a sin θ

So,
dy

dx
=

a(1− cos θ)

a sin θ
=

1− cos θ

sin θ

1.13 Exponential Differentiation:-

We have noted earlier that in the formula table that

d

dx
(ex) = ex
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Can we apply the formula to get
d

dx

[
esinx

]
?

The answer is yes, we can do so.

Let see that as follows:

Example:- Let y =
[
esinx

]
then find

dy

dx
.

In the present example two functions are composed, namely exponential function (ex) and
sinx

So,
dy

dx
=

d

dx

[
esinx

]
= esinx · d

dx
(sinx) = esinx · cosx = cos x · esinx

1.14 Logarithmic Differentiation:-

We have noted earlier that in the formula table that

d

dx
(log x) =

1

x

Can we apply the formula to get
d

dx

[
(x)sinx

]
?

The answer is yes, we can do so.

Let see that as follows:

Exercise: Find the following:

Ex.1.
d

dx

(
xsinx

)
Soln : − Here, we have to use ”Log” to get the derivative.

First we let y = xsinx

Take ’log’ on both sides, we get,

⇒ log y = log(x)sinx

⇒ log y = sinx log x

Differentiating with respect to x, i.e., applying
d

dx
on both sides, we get,

⇒ d

dx
(log y) =

d

dx
(sinx log x)

⇒ 1

y

dy

dx
= sin x

d

dx
(log x) + log x

d

dx
(sinx)
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⇒ 1

y

dy

dx
= sin x

1

x
+ log x(cosx)

⇒ 1

y

dy

dx
=

sinx

x
+ cosx log x

⇒ dy

dx
= y

[
sinx

x
+ cos x log x

]
⇒ dy

dx
= xsinx

[
sinx

x
+ cosx log x

]

Ex.2.
d

dx
((sinx)x + xcosx)

Soln : − Here, we take y = (sin x)x + xcosx

and u = (sin x)x, v = xcosx

Hence, y = u+ v

We know that
dy

dx
=

du

dx
+

dv

dx

So, it is enough to find
du

dx
and

dv

dx

Here, we have to use ”Log” to get these derivatives.

First we let u = (sin x)x

Take ’log’ on both sides, we get,

⇒ log u = log(sinx)x

⇒ log u = x log sin x

Differentiating with respect to x, i.e., applying
d

dx
on both sides, we get,

⇒ d

dx
(log u) =

d

dx
(x log sin x)

⇒ 1

u

du

dx
= x

d

dx
(log sinx) + log sin x

d

dx
(x)

⇒ 1

u

du

dx
= x

1

sinx

d

dx
(sinx) + log sinx · 1

⇒ 1

u

du

dx
=

x cosx

sinx
+ log sin x

⇒ du

dx
= u

[x cosx
sin x

+ log sinx
]

⇒ du

dx
= (sin x)x [x cotx+ log sin x]

Next, we let v = xcosx

Take ’log’ on both sides, we get,
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⇒ log v = log xcosx

⇒ log v = cos x log x

Differentiating with respect to x, i.e., applying
d

dx
on both sides, we get,

⇒ d

dx
(log v) =

d

dx
(cosx log x)

⇒ 1

v

dv

dx
= cos x

d

dx
(log x) + log x

d

dx
(cosx)

⇒ 1

v

dv

dx
= cos x

1

x
+ log x · (− sinx)

⇒ 1

v

dv

dx
=

cos x

x
− sinx · log x

⇒ dv

dx
= v

[cosx
x

− sin x · log x
]

⇒ dv

dx
= xcosx

[cosx
x

− sin x · log x
]

Hence,
dy

dx
=

du

dx
+

dv

dx

⇒ dy

dx
= (sin x)x [x cotx+ log sin x] + xcosx

[cos x
x

− sinx · log x
]

Ex.3.
d

dx

(
x
√
x + (

√
x)x
)

x > 0.

Soln : − Here, we take y = x
√
x + xcosx

and u = x
√
x, v = (

√
x)x

Hence, y = u+ v

We know that
dy

dx
=

du

dx
+

dv

dx

So, it is enough to find
du

dx
and

dv

dx

Here, we have to use ”Log” to get these derivatives.

First we let u = x
√
x

Take ’log’ on both sides, we get,

⇒ log u = log x
√
x

⇒ log u =
√
x log x

Differentiating with respect to x, i.e., applying
d

dx
on both sides, we get,

⇒ d

dx
(log u) =

d

dx
(
√
x log x)
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⇒ 1

u

du

dx
=

√
x
d

dx
(log x) + log x

d

dx
(
√
x)

⇒ 1

u

du

dx
=

√
x
1

x
+ log x · 1

2
√
x

⇒ 1

u

du

dx
= 1 +

log x

2
√
x

⇒ du

dx
= u

[
1 +

log x

2
√
x

]
⇒ du

dx
= x

√
x

[
1 +

log x

2
√
x

]
Next, we let v = (

√
x)x

Take ’log’ on both sides, we get,

⇒ log v = log(
√
x)x

⇒ log v = x log
√
x = x · 1

2
log x

Differentiating with respect to x, i.e., applying
d

dx
on both sides, we get,

⇒ d

dx
(log v) =

1

2

d

dx
(x log x)

⇒ 1

v

dv

dx
=

1

2

[
x
d

dx
(log x) + log x

d

dx
(x)

]
⇒ 1

v

dv

dx
=

1

2

[
x
1

x
+ log x · 1

]
⇒ 1

v

dv

dx
=

1

2
[1 + log x]

⇒ dv

dx
= v

1

2
[1 + log x]

⇒ dv

dx
=

(
√
x)x

2
[1 + log x]

Hence,
dy

dx
=

du

dx
+

dv

dx

⇒ dy

dx
= x

√
x

[
1 +

log x

2
√
x

]
+

(
√
x)x

2
[1 + log x]

EXAMPLE: If xy = ex−y then prove that
dy

dx
=

log x

[log xe]2

Solution: Here, we need to take log on both side of the given equation xy = ex−y

i.e., log xy = log ex−y

⇒ y log x = (x− y) log e

⇒ y log x = (x− y) [Because log e=1]
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⇒ y log x + y = x

⇒ y(log x + 1) = x

⇒ y =
x

(log x + 1)

Applying
d

dx
on both sides we get,

dy

dx
=

d

dx
(x) · (log x+ 1)− x

d

dx
(log x+ 1)

(log x+ 1)2

dy

dx
=

1 · (log x+ 1)− x
1

x
(log x+ 1)2

dy

dx
=

log x+ 1− 1

(log x+ 1)2

dy

dx
=

log x

(log x+ 1)2

dy

dx
=

log x

(log x+ log e)2

dy

dx
=

log x

(log xe)2

EXTRA EXAMPLES

Ex-1. Find lim
x→2

3
√
x+ 6− 3

√
2x+ 4

x2 − 4

Soln:- Here, the given limit

lim
x→2

3
√
x+ 6− 3

√
2x+ 4

x2 − 4

= lim
x→2

3
√
x+ 6− 3

√
2x+ 4

x2 − 4

∵ Multiplying denominator and numerator by
term”(x+ 6)2/3 + (x+ 6)1/3(2x+ 4)1/3 + (2x+ 4)1/3” And using the result

(a− b)(a2 + ab+ b2) = a3 − b3︸ ︷︷ ︸
= lim

x→2

3
√
x+ 6− 3

√
2x+ 4

x2 − 4
· ((x+ 6)2/3 + (x+ 6)1/3(2x+ 4)1/3 + (2x+ 4)2/3)

((x+ 6)2/3 + (x+ 6)1/3(2x+ 4)1/3 + (2x+ 4)2/3)

= lim
x→2

x+ 6− (2x+ 4)

x2 − 4
· 1

((x+ 6)2/3 + (x+ 6)1/3(2x+ 4)1/3 + (2x+ 4)2/3)

= lim
x→2

−x+ 2

(x− 2)(x+ 2)
· 1

((x+ 6)2/3 + (x+ 6)1/3(2x+ 4)1/3 + (2x+ 4)2/3)
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= lim
x→2

1

−(x+ 2)
· 1

((x+ 6)2/3 + (x+ 6)1/3(2x+ 4)1/3 + (2x+ 4)2/3)

= lim
x→2

1

−(x+ 2)
· lim
x→2

1

((x+ 6)2/3 + (x+ 6)1/3(2x+ 4)1/3 + (2x+ 4)2/3)

=
1

−(2 + 2)
· 1

((2 + 6)2/3 + (2 + 6)1/3(2 · 2 + 4)1/3 + (2 · 2 + 4)2/3)

=
1

−4
· 1

((8)2/3 + (8)1/3(8)1/3 + (8)2/3)

=
1

−4
· 1

(4 + 4 + 4)
= − 1

4(12)
= − 1

48

Ex-2. Find lim
x→2

x3 − 3x2 − 2x+ 8

2x3 − 3x− 10

Soln:- Here, the given function is a rational function whose limit is evaluated as

Observe that lim
x→2

x3 − 3x2 − 2x+ 8

2x3 − 3x− 10
=

lim
x→2

(x3 − 3x2 − 2x+ 8)

lim
x→2

(2x3 − 3x− 10)

But, we can see that
lim
x→2

(x3 − 3x2 − 2x+ 8) = 23 − 3(2)2 − 2(2) + 8 = 8− 12− 4 + 8 = 16− 16 = 0

lim
x→2

(2x3 − 3x− 10) = 2(2)3 − 3(2)− 10 = 16− 6− 10 = 0

Next, we can factorize the polynomials x3 − 3x2 − 2x+ 8, 2x3 − 3x− 10 as follows

x3 − 3x2 − 2x+ 8

= (x3 − 2x2 − x2 + 2x− 4x+ 8)

= x2(x− 2)− x (x− 2)− 4 (x− 2) = (x− 2)(x2 − x− 4)

And similarly,

2x3 − 3x− 10

= 2x3 − 4x2 + 4x2 − 8x+ 5x− 10

= 2x2(x− 2) + 4x(x− 2) + 5(x− 2)

= (x− 2)(2x2 + 4x+ 5)

So, now finally the required limit is

lim
x→2

(x− 2)(x2 − x− 4)

(x− 2)(2x2 + 4x+ 5)
= lim

x→2

(x2 − x− 4)

(2x2 + 4x+ 5)
=

22 − 2− 4

2(2)2 + 4(2) + 5
=

−2

21

Ex-3. Find lim
x→3

x3 − x2 − 3x− 9

x2 − 8x+ 15
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Soln:- Here, the given function is a rational function whose limit is evaluated as

Observe that lim
x→3

x3 − x2 − 3x− 9

x2 − 8x+ 15
=

lim
x→3

(x3 − x2 − 3x− 9)

lim
x→3

(x2 − 8x+ 15)

But, we can see that
lim
x→3

(x3 − x2 − 3x− 9) = 33 − (3)2 − 3(3)− 9 = 27− 9− 9− 9 = 0

lim
x→3

(x2 − 8x+ 15) = (3)2 − 8(3) + 15 = 9− 24 + 15 = 0

Next, we can factorize the polynomials x3 − x2 − 3x− 9, x2 − 8x+ 15 as follows

x3 − x2 − 3x− 9

= (x3 − 3x2 + 2x2 − 6x+ 3x− 9)

= x2(x− 3) + 2x (x− 3) + 3 (x− 3) = (x− 3)(x2 + 2x+ 3)

And similarly,

x2 − 8x+ 15

= x2 − 3x− 5x+ 15

= x(x− 3)− 5(x− 3)

= (x− 3)(x− 5)

So, now finally the required limit is

lim
x→3

(x− 3)(x2 + 2x+ 3)

(x− 3)(x− 5)
= lim

x→3

(x2 + 2x+ 3)

(x− 5)
=

32 + 2(3) + 3

3− 5
=

18

−2
= −9

Ex-4. Find lim
x→1

√
x+ 7−

√
3x+ 5√

3x+ 5−
√
5x+ 3

Soln:- Here, the given limit

lim
x→1

√
x+ 7−

√
3x+ 5√

3x+ 5−
√
5x+ 3

= lim
x→1

√
x+ 7−

√
3x+ 5√

3x+ 5−
√
5x+ 3

× (
√
x+ 7 +

√
3x+ 5)

(
√
x+ 7 +

√
3x+ 5)

× (
√
3x+ 5 +

√
5x+ 3)

(
√
3x+ 5 +

√
5x+ 3)

[Multiplying denominator and numerator by conjugate surds]

= lim
x→1

x+ 7− (3x+ 5)

3x+ 5− (5x+ 3)
×

√
3x+ 5 +

√
5x+ 3√

x+ 7 +
√
3x+ 5

= lim
x→1

x+ 7− (3x+ 5)

3x+ 5− (5x+ 3)
× lim

x→1

√
3x+ 5 +

√
5x+ 3√

x+ 7 +
√
3x+ 5
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= lim
x→1

−2x+ 2

−2x+ 2
× lim

x→1

√
3x+ 5 +

√
5x+ 3√

x+ 7 +
√
3x+ 5

= lim
x→1

1×
√
3 + 5 +

√
5 + 3√

1 + 7 +
√
3 + 5

=
2
√
8

2
√
8
= 1

Ex-5. Find lim
x→3

√
x+ 1−

√
2x− 2√

3x+ 7−
√
5x+ 1

Soln:- Here, the given limit

lim
x→3

√
x+ 1−

√
2x− 2√

3x+ 7−
√
5x+ 1

= lim
x→3

√
x+ 1−

√
2x− 2√

3x+ 7−
√
5x+ 1

× (
√
x+ 1 +

√
2x− 2)

(
√
x+ 1 +

√
2x− 2)

× (
√
3x+ 7 +

√
5x+ 1)

(
√
3x+ 7 +

√
5x+ 1)

[Multiplying denominator and numerator by conjugate surds]

= lim
x→3

x+ 1− (2x− 2)

3x+ 7− (5x+ 1)
×

√
3x+ 7 +

√
5x+ 1√

x+ 1 +
√
2x− 2

= lim
x→3

x+ 1− (2x− 2)

3x+ 7− (5x+ 1)
× lim

x→3

√
3x+ 7 +

√
5x+ 1√

x+ 1 +
√
2x− 2

= lim
x→3

−x+ 3

−2x+ 6
× lim

x→3

√
3x+ 7 +

√
5x+ 1√

x+ 1 +
√
2x− 2

= lim
x→3

1

2
× lim

x→3

−x+ 3

−x+ 3
× lim

x→3

√
3x+ 7 +

√
5x+ 1√

x+ 1 +
√
2x− 2

=
1

2
× 1×

√
3(3) + 7 +

√
5(3) + 1

√
3 + 1 +

√
2(3)− 2

=
1

2

√
16 +

√
9√

4 +
√
4

=
1

2
· 4 + 3

2 + 2
=

7

8

Ex-6. Find lim
x→−1

√
8− x−

√
7− 2x

x3 + 1

Soln:- Here, the given limit

lim
x→−1

√
8− x−

√
7− 2x

x3 + 1

= lim
x→−1

√
8− x−

√
7− 2x

x3 + 1
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[Multiplying denominator and numerator by conjugate surds]

= lim
x→−1

8− x− (7− 2x)

x3 + 1
× 1√

8− x+
√
7− 2x

= lim
x→−1

(x+ 1)

x3 + 1
× lim

x→−1

1√
8− x+

√
7− 2x

= lim
x→−1

(x+ 1)

(x+ 1)(x2 − x+ 1)
× 1√

8 + 1 +
√
7 + 2

= lim
x→−1

1

(x2 − x+ 1)
× 1

6

=
1

(1 + 1 + 1)
× 1

6
=

1

18

Ex-7. Find lim
x→2

x3 − x2 − x− 2

x2 − 6x+ 8

Soln:- Here, the given function is a rational function whose limit is evaluated as

Observe that lim
x→2

x3 − x2 − x− 2

x2 − 6x+ 8
=

lim
x→2

(x3 − x2 − x− 2)

lim
x→2

(x2 − 6x+ 8)

But, we can see that
lim
x→2

(x3 − x2 − x− 2) = 23 − (2)2 − (2)− 2 = 8− 4− 2− 2 = 0

lim
x→2

(x2 − 6x+ 8) = (2)2 − 6(2) + 8 = 4− 12 + 8 = 0

Next, we can factorize the polynomials x3 − x2 − x− 2, x2 − 6x+ 8 as follows

x3 − x2 − x− 2

= (x3 − 2x2 + x2 − 2x+ x− 2)

= x2(x− 2) + x (x− 2) + 1 (x− 2) = (x− 2)(x2 + x+ 1)

And similarly,

x2 − 6x+ 8

= x2 − 2x− 4x+ 8

= (x− 2)(x− 4)

So, now finally the required limit is

lim
x→2

(x− 2)(x2 + x+ 1)

(x− 2)(x− 4)
= lim

x→2

(x2 + x+ 1)

(x− 4)
=

22 + 2 + 1

2− 4
=

7

−2
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Ex-8. Find lim
x→1

x2 − 2x+ 1

x3 − 3x2 + 7x− 5

Soln:- Here, the given function is a rational function whose limit is evaluated as

Observe that lim
x→1

x2 − 2x+ 1

x3 − 3x2 + 7x− 5
=

lim
x→1

(x2 − 2x+ 1)

lim
x→1

(x3 − 3x2 + 7x− 5)

But, we can see that
lim
x→1

(x2 − 2x+ 1) = 0

lim
x→1

(x3 − 3x2 + 7x− 5) = 0

Next, we can factorize the polynomials x2 − 2x+ 1, x3 − 3x2 + 7x− 5 as follows

x2 − 2x+ 1

= (x− 1)2

And similarly,

x3 − 3x2 + 7x− 5

= x3 − x2 − 2x2 + 2x+ 5x− 5 = 0

= (x− 1)(x2 − 2x+ 5)

So, now finally the required limit is

lim
x→1

(x− 1)2

(x− 1)(x2 − 2x+ 5)
= lim

x→1

(x− 1)

(x2 − 2x+ 5)

= lim
x→1

(x− 1)

(x2 − 2x+ 5)
=

22 + 2 + 1

2− 4
=

7

−2

EX.9 Evaluate lim
x→0

sin 2x

3x

Soln:- Here, we use the above mentioned result, lim
x→0

sin 2x

3x
= lim

x→0

sin 2x

2x
· 2
3

= lim
2x→0

sin 2x

2x
· lim
x→0

2

3

=
2

3

EX.10 Evaluate lim
x→π

sinx

π − x

Soln:- Here, we use the above mentioned result, lim
x→π

sinx

π − x
= lim

x→π

sinx

π − x

Taking y = x− π so as x → π ⇒ y → 0, hence above limit is transformed to
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= lim
y→0

sin(y + π)

y
= lim

y→0

sin y cos π + sin π cos y

y
= lim

y→0

− sin y

y
= − lim

y→0

sin y

y
= −1

EX.11 Evaluate lim
x→0

3 sin x− sin 3x

x3

Soln:- Here, we use the above mentioned result(5),

lim
x→0

3 sin x− sin 3x

x3

= lim
x→0

4 sin3 x

x3

= 4 · lim
x→0

(
sinx

x

)3

= 4 ·
(
lim
x→0

sinx

x

)3

= 4 · (1)3 = 4

EX.12 Evaluate lim
x→0

sin(a+ x) + sin(a− x)− 2 sin a

x2

Soln:- Here, we use the above mentioned result(5),

lim
x→0

sin(a+ x) + sin(a− x)− 2 sin a

x2
= lim

x→0

2 sin a cosx− 2 sin a

x2

∵ sin(a+ x) = sin a cos x+ cos a sinx︸ ︷︷ ︸
and sin(a− x) = sin a cosx− cos a sinx︸ ︷︷ ︸

= lim
x→0

2 sin a(cosx− 1)

x2

= 2 sin a · lim
x→0

(cosx− 1)

x2

= 2 sin a · lim
x→0

−(2 sin2(x/2))

x2

= −4 sin a · lim
x→0

(sin(x/2))2

x2

= −4 sin a · lim
x→0

(sin(x/2))2

4(x/2)2

= (−4/4) sin a · lim
x→0

(sin(x/2))2

(x/2)2

= − sin a

Ex.13 Evaluate lim
x→0

tanx− sin x

x3

Ex.14 Evaluate lim
x→1

1 + cosπx

tan2 πx

Ex.15 Obtain
d

dx
x3 by definition.
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Soln:- Here f(x) = x3,
d

dx
x3 = lim

h→0

(x+ h)3 − x3

h
= lim

h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h

= lim
h→0

3x2h+ 3xh2 + h3

h
= lim

h→0
3x2 + 3xh+ h2 = 3x2

Ex.16 Obtain
d

dx

1

2x+ 3
by definition.

Soln: Here,
d

dx

1

2x+ 3
= lim

t→x

f(t)− f(x)

t− x

= lim
t→x

(2t+ 3)−1 − (2x+ 3)−1

t− x

= lim
t→x

(2x+ 3)− (2t+ 3)/(2x+ 3)(2t+ 3)

t− x

= lim
t→x

−2(t− x)

(t− x)(2x+ 3)(2t+ 3)

= lim
t→x

−2

(2x+ 3)(2t+ 3)

= lim
t→x

−2

(2x+ 3)(2x+ 3)

= lim
t→x

−2

(2x+ 3)2
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UNIT-2 : Integration

”The concept of integration comes from the summation in fact, it is an infinite
summation in limiting situation. It is the inverse operation
of Differentiation.”

Topics to be covered:

2.1 Integration: Definition

2.2 Properties of Integration

2.3 Some standard Formulas of Integration.

2.4 Simple Examples of Integration

2.5 Method of Substitution for Integration(Trigonometric Substitution)

2.6 Integration by Parts Method

2.1 Integration:

Definition:

If a function g(x) is differentiable and if
d

dx
g(x) = f(x), then g(x) is called integral or

primitive or antiderivative of f(x) and it is denoted by
∫

f(x) dx

2.2 Properties of Integration

(a) d
dx

(∫
f(x) dx

)
= f(x)

e.g., d
dx

(∫
sinx dx

)
= sin x

(b)
∫
f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx

e.g.,
∫
(log x+ sin x) dx =

∫
log x dx+

∫
sin x dx

(c)
∫
k f(x) dx = k

∫
f(x) dx, where k is a constant.

e.g.,
∫
2 x2 dx = 2

∫
x2 dx
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2.3 Some Standard Formulas of Integration

No Integrand f(x)
∫
f(x) dx

1. xn xn+1

n+ 1
+ c

2. cosx sinx
3. sinx − cos x
4. sec2 x tanx
5. cosec2x − cotx

6. sec x tanx sec x

7. cosecx cotx −cosecx

8.
1

1 + x2
tan−1 x

9.
1

a2 + x2
1
a
tan−1

(
x
a

)
10.

1√
1− x2

sin−1 x

11.
1√

a2 − x2
sin−1

(
x
a

)
12. ex ex

13.
1√

x2 ± a2
log(x+

√
x2 ± a2)

14.
1

x2 − a2
1

2a
log

∣∣∣∣x− a

x+ a

∣∣∣∣
15.

1

a2 − x2
− 1

2a
log

∣∣∣∣x− a

x+ a

∣∣∣∣
16. tanx log | secx|

17. cotx log | sin x|

18. cosecx log
∣∣tan x

2

∣∣
19. sec x log | sec x+ tan x|

20. ax
ax

loge a

21.
f ′(x)

f(x)
log |f(x)|

22. [f(x)]n · f ′(x)
[f(x)]n+1

n+ 1
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EXERCISE: Evaluate the following integration.

Ex.1.
∫
(x3/2 − 3 · 5x − 1

x
) dx , x > 0

Soln : − Here we have to find
∫
(x3/2 − 3 · 5x − 1

x
) dx

=

∫
x3/2 dx−

∫
3 · 5x dx−

∫
1

x
dx

=
x(3/2)+1

(3/2) + 1
− 3

∫
5x dx− log x

=
x(3/2)+1

(3/2) + 1
− 3

5x

log 5
− log x

=
x5/2

5/2
− 3

5x

log 5
− log x

=
2x5/2

5
− 3

5x

log 5
− log x

EX.2
∫ x3 + 3x2 + 4√

x
dx , x > 0

Soln : − Here, we want to find
∫ x3 + 3x2 + 4√

x
dx

=

∫
x−1/2[x3 + 3x2 + 4] dx

=

∫
x−1/2[x3] + x−1/2[3x2] + x−1/2[4] dx

=

∫
x−1/2[x3] dx+

∫
x−1/2[3x2] dx+

∫
x−1/2[4] dx

=

∫
x(−1/2)+3 dx+

∫
3x(−1/2)+2 dx+

∫
4x−1/2 dx

=

∫
x5/2 dx+

∫
3x3/2 dx+

∫
4x−1/2 dx

=
x(5/2)+1

(5/2) + 1
+ 3

x(3/2)+1

(3/2) + 1
+ 4

x(−1/2)+1

(−1/2) + 1

=
x7/2

7/2
+ 3

x5/2

5/2
+ 4

x1/2

1/2

=
2x7/2

7
+

6x5/2

5
+ 8x1/2
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Ex.3.
∫
(sinx+ ex + 4x + x4) dx

Soln : − Here we want to prove that
∫
(sinx+ ex + 4x + x4) dx

=
∫
sinx dx+

∫
ex dx+

∫
4x dx+

∫
x4 dx

= − cos x+ ex +
4x

log 4
+

x5

5

Ex.4.
∫ 1

4x2 + 9
dx

Soln : − Here we have to prove that
∫ 1

4x2 + 9
dx

=

∫
1

4(x2 + 9
4
)
dx

=
1

4

∫
1

(x2 + 9
4
)
dx

=
1

4

∫
1

(x2 + 9
4
)
dx

Using the formula ∫
1

x2 + a2
dx =

1

a
tan−1 x

a

=
1

4

1

3/2
tan−1 x

3/2

=
1

4
· 2
3
tan−1 2x

3

=
1

6
tan−1 2x

3

Ex.5.
∫ cosx

cosx− 1
dx

Soln : − Here we have to prove that
∫ cosx

cos x− 1
dx

=

∫ (
cos x

cos x− 1
× cosx+ 1

cosx+ 1

)
dx

=

∫ (
cos x(cosx+ 1)

cos2 x− 1

)
dx

=

∫
cos x(cosx+ 1)

sin2 x
dx

=

∫
cos2 x+ cos x

sin2 x
dx

=

∫
cos2 x

sin2 x
dx+

∫
cosx

sin2 x
dx

=

∫
cot2 x dx+

∫
cotx · cosecx dx
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=

∫
1− cosec2x dx+

∫
cotx · cosecx dx

=

∫
1 dx−

∫
cosec2x dx +

∫
cot x · cosecx dx

= x− (− cotx)− cosecx

= x+ cot x− cosecx

EXERCISE:. Evaluate the following integration.

EX.1.
∫
x
√
x+ 2 dx, x > −2

Soln : − Here we want to find
∫
x
√
x+ 2 dx, x > −2

I =
∫
x
√
x+ 2 dx

Here, the above integral contains the term
√
x+ 2, so let substitution

√
x+ 2 =

t ⇒ x+ 2 = t2 ⇒ x = t2 − 2

⇒ d

dt
(x+ 2) =

d

dt
(t2) ⇒ dx

dt
= 2t ⇒ dx = 2tdt

Using this into I we get,

I =

∫
(t2 − 2)t(2tdt)

=

∫
2(t2 − 2)t2dt

=

∫
(2t4 − 2t2)dt

=

∫
2t4 dt−

∫
2t2dt

= 2
t5

5
− 2

t3

3
But, we have taken t =

√
x+ 2, so we have to substitute it back

I =
2

5
(
√
x+ 2)5 − 2

3
(
√
x+ 2)3

EX.2.
∫ x− 1√

x+ 4
dx, x > −4

Soln : − Here we have to find I =
∫ x− 1√

x+ 4
dx

Here the integrand contains the term
√
x+ 4, so take

√
x+ 4 = t

⇒ x+ 4 = t2 ⇒ x = t2 − 4 ⇒ d

dt
(x) =

d

dt
(t2 − 4) ⇒ dx

dt
= 2t ⇒ dx = 2tdt

Using this into the integral I, we get
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I =

∫
(t2 − 4)− 1

t
(2t dt)

=

∫
2(t2 − 5) dt

=

∫
2t2 − 10 dt

=

∫
2t2 dt−

∫
10 dt

=
2t3

3
− 10t

But we have taken t =
√
x+ 4, so we have to substitute it back.

I =
2(
√
x+ 4)3

3
− 10

√
x+ 4

EX.3.
∫ 1− tanx

1 + tanx
dx

Soln : − Here we have to find I =
∫ 1− tanx

1 + tanx
dx

I =

∫
1− sinx

cosx

1 + sinx
cosx

dx

=

∫
(cosx− sin x)/ cosx

(cosx+ sin x)/ cosx
dx

=

∫
(cosx− sin x)

(cosx+ sin x)
dx

Let t = cos x+ sin x ⇒ dt = (− sin x+ cos x) dt ⇒ dt = (cos x− sin x)dx

Using this into I, we get

I =

∫
dt

t

I = log t ⇒ I = log(cos x+ sin x)

EX.4.
∫ e2x + 1

e2x − 1
dx

Soln : − Here we have to find I =
∫ e2x + 1

e2x − 1
dx

=

∫
e2x + 1

e2x − 1
dx

=

∫
e−x(e2x + 1)

e−x(e2x − 1)
dx

=

∫
(ex + e−x)

(ex − e−x)
dx

=

∫
(ex + e−x)

(ex − e−x)
dx
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Let ex − e−x = t ⇒ (ex − e−x(−1))dx = dt ⇒ (ex + e−x)dx = dt

Using this into I, we get,

I =

∫
dt

t
= log t = log(ex − e−x)

EX.5.
∫
x4x · (1 + log x) dx , x > 0

Soln : − Here we have to find
∫
x4x · (1 + log x) dx

I =

∫
x4x · (1 + log x) dx

=

∫
x3x · xx (1 + log x) dx

=

∫
x3x · [xx (1 + log x)] dx

Here, we can see that,

For t = xx

Next to find
dt

dx
we have to use log as follows,

t = xx ⇒ log t = log xx ⇒ log t = x log x

Now differentiating with respect to x, we get,

1

t
· dt
dx

=
d

dx
(x log x)

⇒ dt

dx
= t

[
dx

dx
(log x) + x

d

dx
(log x)

]
⇒ dt

dx
= xx

[
log x+ x

1

x

]
⇒ dt

dx
= xx[log x+ 1]

⇒ dt = xx[log x+ 1] dx

Now,

I =

∫
(xx)3[xx(log x+ 1)] dx

using the above substitutions into I, we get,

I =

∫
t3 dt

I =
t4

4
=

(xx)4

4
=

x4x

4

EX.6.
∫ sin x

sin 3x
dx
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Soln : − Here we have to find
∫ sinx

sin 3x
dx

I =

∫
sinx

sin 3x
dx

We know that sin 3x = 3 sin x− 4 sin3 x, so using this into above integral we get,

I =

∫
sinx

3 sin x− 4 sin3 x
dx

Dividing numerator and denominator both by sin3 θ, we get,

I =

∫
(sinx)/(sin3 x)

(3 sin x− 4 sin3 x)/ sin3 x
dx

=

∫
cosec2x

3cosec2x− 4
dx

Now, we take the substitution cotx = t ⇒ −cosec2x dx = dt into I,we get

I =

∫
cosec2x

3(1 + cot2 x)− 4
dx =

∫
− dt

3(1 + t2)− 4

= −
∫

dt

3 + 3t2 − 4

= −
∫

dt

3t2 − 1
Now, by the formula∫

dx

x2 − a2
=

1

2a
log

∣∣∣∣x− a

x+ a

∣∣∣∣
we get,

I = −
∫

dt

3
(
t2 − 1

3

)
= −1

3

∫
dt(

t2 − 1
3

)
= −1

3

∫
dt(

t2 − ( 1√
3
)2
)

= −1

3

1

2(1/
√
3)

log

∣∣∣∣∣t− (1/
√
3)

t+ (1/
√
3)

∣∣∣∣∣
= −

√
3

6
log

∣∣∣∣∣
√
3t− 1√
3t+ 1

∣∣∣∣∣
= − 1

2
√
3
log

∣∣∣∣∣
√
3t− 1√
3t+ 1

∣∣∣∣∣
EX.7.

∫ (log x)n

x
dx, x > 0
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Soln : − Here we have to find
∫ (log x)n

x
dx, x > 0

I =

∫
(log x)n

x
dx

=

∫
(log x)n · 1

x
dx

=

∫
(log x)n · d

dx
(log x) dx

Now, using the formula∫
[f(x)]nf ′(x) dx =

[f(x)]n+1

n+ 1

we get,

I =
[log x]n+1

n+ 1

2.5 Method of Trigonometric substitution in Integration

Sometimes using proper trigonometric substitutions we can
transform given integral into a simple form whose integra-
tion can be easily obtained.

(a) List of Some Trigonometric Identities Useful in Substitution

No. Trigonometric Identities

1. sin2 θ + cos2 θ = 1

2. sec2 θ − tan2 θ = 1

3. cos 2θ = cos2 θ − sin2 θ

4. sin 2θ = 2 sin θ cos θ

5. sin2 θ =
1− cos 2θ

2

6. cos2 θ =
1 + cos 2θ

2
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(b) List of Some Trigonometric Substitutions

No. Integrand Involving the term Substitution

1.
√
a2 − x2 x = a sin θ

2.
√
x2 − a2 x = a sec θ

3.
√
x2 + a2 x = a tan θ

4.
√
x+ a or

√
x− a x = a cos 2θ

5.
√
a− x x = a sin2 θ

6.
√
a+ x x = a tan2 θ

7.
√
2ax− x2 =

√
a2 − (x− a)2 x− a = a sin θ

EXERCISE: Evaluate the following integration.

EX.1.
∫
x2

√
a6 − x6 dx (a > 0)

Soln : − Here we have to find
∫
x2

√
a6 − x6 dx

I =

∫
x2

√
a6 − x6 dx

Here, by observing the term
√
a6 − x6 and the above list of the substitutions we

should select the substitution x3 = a3 sin θ

OR

Using the formula sin2 θ + cos2 θ = 1
that implies cos2 θ = 1− sin2 θ
Comparing with cos2 θ = a6 − x6

⇒ 1− sin2 θ ≈ a6
(
1− x6

a6

)
⇒ sin2 θ = x6

a6

so, the appropriate substitution is x3 = a3 sin θ

⇒ 3x2 dx = a2 cos θ dθ ⇒ x2 dx =
1

3
a2 cos θ dθ

Here,

I =

∫ √
a6 − x6 (x2 dx)

Using the above substitutions into I, we get
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I =

∫ √
a6 − a6 sin2 θ

(
1

3
a3 cos θdθ

)
=

1

3

∫ √
a6
√

1− sin2 θ a3 cos θ dθ

=
1

3

∫
a3
√
cos2 θ a3 cos θ dθ

=
1

3
a3a3

∫
cos θ cos θ dθ

=
a6

3

∫
cos2 θ dθ

=
a6

3

∫
1 + cos 2θ

2
dθ

=
a6

3 · 2

∫
1 + cos 2θ dθ

=
a6

6

[∫
1 dθ +

∫
cos 2θ dθ

]

I =
a6

6

[
θ +

sin 2θ

2

]
=

a6

6

[
θ +

2 sin θ · cos θ
2

]
=

a6

6
[θ + sin θ · cos θ]

But, we have taken x3 = a3 sin θ ⇒ sin θ =
x3

a3

⇒ cos θ =
√
1− sin2 θ =

√
1− x6

a6
=

√
a6 − x6

a6
=

1

a3
√
a6 − x6

And sin θ =
x3

a3
⇒ θ = sin−1 x

3

a3

Hence,

I =
a6

6

[
sin−1 x

3

a3
+

x3

a3
· 1

a3

√
a6 − x6

]
I =

a6

6

[
sin−1 x

3

a3
+

x3

a6

√
a6 − x6

]

EX.2.
∫ 1√

2ax− x2
dx (0 < x < 2a)

Soln : − Here we have to find
∫ 1√

2ax− x2
dx

I =

∫
1√

2ax− x2
dx

Here, we the given integral contains

√
2ax− x2 =

√
a2 − a2 + 2ax− x2 =

√
a2 − (a2 − 2ax+ x2)

=
√

a2 − (x2 − 2ax+ a2) =
√
a2 − (x− a)2
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So,

I =

∫
1√

a2 − (x− a)2
dx

Next, using the substitution x− a = a sin θ

⇒ dx = a cos θ dθ

Hence, we get,

I =

∫
1√

a2 − a2 sin2 θ
a cos θ dθ

=

∫
1

a
√

1− sin2 θ
a cos θ dθ

=

∫
1

a cos θ
a cos θ dθ

=

∫
dθ = θ

But we have taken x− a = a sin θ ⇒ sin θ =
x− a

a
⇒ θ = sin−1

(
x− a

a

)
So,

I = sin−1

(
x− a

a

)

EX.3.
∫ √

3− x

x
dx x ∈ (0, 3)

Soln : − Here we have to find
∫ √

3− x

x
dx

I =

∫ √
3− x

x
dx

Here, observing the given integral it contains the term
√
3− x

Using the formula cos2 θ = 1− sin2 θ comparing with 3− x = 3
(
1− x

3

)
We get,the proper substitution

x

3
= sin2 θ ⇒ x = 3 sin2 θ

⇒ dx = 3(2 sin θ)
d

dθ
(sin θ) dθ ⇒ dx = 6 sin θ · cos θ dθ.

Using the above substitution into I, we get,

I =

∫ √
3− 3 sin2 θ

3 sin2 θ
(6 sin θ · cos θ dθ)

=

∫ √
3(1− sin2 θ)

3 sin θ
6 cos θ dθ

=
6
√
3

3

∫ √
cos2 θ

sin θ
cos θ dθ
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= 2
√
3

∫
cos θ

sin θ
cos θ dθ

= 2
√
3

∫
cos2 θ

sin θ
dθ

= 2
√
3

∫
1− sin2 θ

sin θ
dθ

= 2
√
3

[∫
1

sin θ
dθ −

∫
sin2 θ

sin θ
dθ

]
= 2

√
3

[∫
cosecθ dθ −

∫
sin θ dθ

]
= 2

√
3

[
log

∣∣∣∣tan θ

2

∣∣∣∣− (− cos θ)

]
= 2

√
3

[
log

∣∣∣∣tan θ

2

∣∣∣∣+ cos θ

]
But, we have taken x = 3 sin2 θ ⇒ x

3
= sin2 θ ⇒

√
x

3
= sin θ

⇒ θ = sin−1

√
x

3

So, using this, we get,

I = 2
√
3

[
log

∣∣∣∣tan sin−1
√

x/3

2

∣∣∣∣+ cos
(
sin−1

√
x
3

)]

2.6 Integration By Parts Method

≫ Rule of Integration by Parts:

If
(i) the two functions u(x) and v(x) are differentiable functions

(ii) u′, v′ are continuous then

∫
u v dx = u

∫
v dx−

∫
( d
dx
u) · (

∫
v dx) dx

≫ Note:-

1. While using the above formula we have to be careful about the choice of u
and v, so that the integration should be easier.

2. For the choice of the function ”u” we follow the priority order : LIATE (L:
Logarithmic function, I: Inverse function, A: Algebraic function, T: Trigono-
metric function, E: Exponential function.)

Log(log x, log(x+ 1), ...)
≫ Inverse(tan−1, cos−1, sin−1, ..)
≫ Algebraic(1, x, x2, 1 + x, 2 + 7x, x3, ....)
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≫ Trigonometric(sin, cos, tan, ...)
≫ Exponential(ex, ex+1, ...)

3. Sometimes we use the method of integration by parts to get integrals of one
function only. In that case we take v=1.
Thus we will obtain integrals of log x, sin−1 x, tan−1 x, ... using this method.

≫EXERCISE:- Evaluate the following integration.

EX.1.
∫
xex dx

Soln : − Here we have to find
∫
xex dx

We use integration by parts method.

I =

∫
xex dx

Here, the above integrand is the product of two functions x and ex, so we use the
integration by parts method.

By the priority order LIATE,
here A: Algebraic function x, comes before the E: Exponential function ex

So, we have to select u = x and v = ex

Using them into the formula

∫
u · v dx = u

(∫
v dx

)
−
∫ (

d

dx
(u)

)(∫
v dx

)
dx

We get,∫
x · ex dx = x

(∫
ex dx

)
−
∫ (

d

dx
(x)

)(∫
ex dx

)
dx

= x ex −
∫
(1) · (ex) dx

= x ex −
∫

ex dx

I = x ex − ex = ex(x− 1)

EX.2.
∫
x cos x dx

Soln : − Here we have to find
∫
x cos x dx

Let I =

∫
x cos x dx

Here, the above integrand is the product of two functions x and cosx, so we use
the integration by parts method.
By the priority order LIATE,



51

here A: Algebraic function x, comes before the T: Trigonometric function cosx

So, we have to select u = x and v = cos x
And using them into the formula,

∫
u · v dx = u

(∫
v dx

)
−
∫ (

d

dx
(u)

)(∫
v dx

)
dx

we get,∫
x · cosx dx = x

(∫
cos x dx

)
−
∫ (

d

dx
(x)

)(∫
cos x dx

)
dx

= x(sinx)−
∫

(1) · (sinx) dx

= x(sinx)−
∫
(sinx) dx

= x(sinx)− (− cos x)

I = x sinx+ cos x

EX.3.
∫
x log x dx

Soln : − Here we have to find
∫
x log x dx

Let I =

∫
x log x dx

Here, the above integrand is the product of two functions x and log x, so we use
the integration by parts method.

By the priority order LIATE,
here L: Logarithmic function log x, comes before the A: Algebraic function x

So, we have to select u = log x and v = x
And using them into the formula,

∫
u · v dx = u

(∫
v dx

)
−
∫ (

d

dx
(u)

)(∫
v dx

)
dx

we get,∫
log x · x dx = log x

(∫
x dx

)
−
∫ (

d

dx
(log x)

)(∫
x dx

)
dx

= log x

(
x2

2

)
−
∫ (

1

x

)(
x2

2

)
dx

=

(
x2

2

)
log x−

∫ (x
2

)
dx

=
x2

2
log x− 1

2

∫
x dx
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=
x2

2
log x− 1

2

x2

2

=
x2

2
log x− x2

4

I =
x2

4
[2 log x− 1]

EX.4.
∫
(2 + 7x) cos 6x dx

Soln : − Here we have to find
∫
(2 + 7x) cos 6x dx

Let I =

∫
(2 + 7x) cos 6x dx

Here, the above integrand is the product of two functions (2 + 7x) and cos 6x, so
we use the integration by parts method.

By the priority order LIATE,here
A: Algebraic function (2 + 7x), comes before the T: Trigonometric function cos 6x

So, we have to select u = (2 + 7x) and v = cos 6x
And using them into the formula,∫

u · v dx = u

(∫
v dx

)
−
∫ (

d

dx
(u)

)(∫
v dx

)
dx

we get,∫
(2 + 7x) · cos 6x dx = (2 + 7x)

(∫
cos 6x dx

)
−
∫ (

d

dx
(2 + 7x)

)(∫
cos 6x dx

)
dx

= (2 + 7x)

(
sin 6x

6

)
−
∫

(0 + 7)

(
sin 6x

6

)
dx

=
1

6
(2 + 7x) sin 6x − 7

6

∫
sin 6x dx

=
1

6
(2 + 7x) sin 6x − 7

6

(− cos 6x)

6

I =
1

6
(2 + 7x) sin 6x +

7

36
cos 6x

EX.5.
∫
log x dx

Soln : − Here we have to find
∫
log x dx

Let I =

∫
log x dx

We don’t have any formula for the integration of log x

We can see the log x as
(log x) · 1 = u · v
So,
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I =

∫
(log x) · 1 dx

Here, the above integrand is the product of two functions log x and 1, so we use
the integration by parts method.

By the priority order LIATE,here
L: Logarithmic function log x, comes before the A: Algebraic function 1

So, we have to select u = log x and v = 1
And using them into the formula,∫

u · v dx = u

(∫
v dx

)
−
∫ (

d

dx
(u)

)(∫
v dx

)
dx

we get,

∫
log x · 1 dx = log x

(∫
1 dx

)
−
∫ (

d

dx
(log x)

)(∫
1 dx

)
dx

= (log x) x−
∫

1

x
· x dx

= x log x−
∫

1 dx

I = x log x− x

EXTRA EXAMPLES :

EXERCISE: Evaluate the following integration.

(1)
∫
(x
a
+ a

x
+ xa + ax + ax) dx

(2)
∫ 1√

2x2 + 3
dx

(3)
∫ cos 2x

sin2 2x
dx

(4)
∫ a+ b cosx

sin2 x
dx

(5)
∫
(ea log x + ex log a) dx

(6)
∫ √

1− cosx dx, 0 < x < π

Method of Substitution

(7)
∫
tan3 x dx

(8)
∫ x2

1 + x6
dx

(9)
∫ ex

e2x + 1
dx

(10)
∫ dx

1− tanx
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(11)
∫ dx

x2
√
1− x2

Use Integration by parts method:

(12)
∫
(log x)2 dx

(13)
∫
x2e3x dx

(14)
∫
x3 tan−1 x dx

(15)
∫ x

1− cos x
dx
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UNIT - 3: US02EMTH02

(ELECTIVE MATHS, SEM. II)

Definite Integration

”We know integration (in fact antiderivative) as an inverse operator of differenti-
ation. From Historical point of view, the concept of Integration has its origin to
the problem of finding area of a plane bounded region. The definite integral was
expressed as a limit of certain sum expressing the area of some region. Later on the
link between apparently two different concepts of differentiation and integration was
established in 17th century by well-known mathematician Leibnitz. The relation is
known as Fundamental Theorem of Integration.”

Topics to be covered
3.1 Definite Integration: Definition
3.2 Fundamental Principle of definite integration
3.3 Working Rules of Definite integration.
3.4 Statements of some useful results about definite integration.
3.5 Application of Fundamental Principle of definite integration
3.6 Integration by Parts method for Definite Integrals.

Reference book : Gujarat State Board of School Textbook
Standard - 12 MATHEMATICS - 2,(CHAPTER - 7 )

3.1 Definition: Definite integration.
The indefinite integral in a limiting situation

b∫
a

f(x) dx

is known as definite integral a function f(x).

More precisely we can define it as follows:-

Divide the interval [a, b] into n-equal parts the length h =
b− a

n

Then consider the sum

S = lim
n→∞

h
n−1∑
i=0

f(a+ ih)

is the value of the definite integral

b∫
a

f(x) dx
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Hence,
b∫

a

f(x) dx = lim
n→∞

h
n−1∑
i=0

f(a+ ih)

3.2 Fundamental principle of definite integration

History:
This principle establishes a relation between the process of
differentiation and integration. Newton and Leibnitz indepen-
dently obtained this result. With the help of this result we
can obtain the definite integral of a function over an inter-
val by taking difference of values of its primitive at the given
interval.

Statement: If a function f is continuous on [a, b] and F is a differentiable function on [a, b] such that
d

dx
[F (x)] = f(x) then

b∫
a

f(x)dx = [F (x)]ba = F (b)− F (a).

Example: Using the fundamental principle of definite integral evaluate:
1∫
0

(x2 + 3)dx

Soln:
1∫
0

(x2 + 3)dx =
1∫
0

(x2) dx+
1∫
0

3 dx =
[
x3

3

]1
0
+ 3[x]10 =

1
3
+ 3 = 10

3

3.3 Working rules of definite integration

≫
b∫
a

f(x) dx = −
a∫
b

f(x) dx.

≫
a∫
a

f(x) dx = 0.

≫ For a < c < b then
b∫
a

f(x) dx =
c∫
a

f(x) dx +
b∫
c

f(x) dx.

≫
b∫
a

[f(x) + g(x)] dx =
b∫
a

f(x) dx +
b∫
a

g(x) dx.

≫
b∫
a

k f(x) dx = k
c∫
a

f(x) dx, where k is a constant.

3.4 Statements of some useful results about definite integration.

– If f(x) is even function then
a∫

−a

f(x) dx = 2
a∫
0

f(x) dx.

– If f(x) is odd function then
a∫

−a

f(x) dx = 0.

–
a∫
0

f(x) dx =
a∫
0

f(a− x) dx.

–
b∫
a

f(x) dx =
b∫
a

f(a+ b− x) dx.
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–
2a∫
0

f(x) dx =
a∫
0

f(x) dx+
a∫
0

f(2a− x) dx.

3.5 Application of Fundamental Principle of definite integration.

Exercise: Evaluate the following integrals.

(1)
1∫
0

2x+ 3

5x2 + 1
dx

Sol.: Here we want to find
1∫
0

2x+ 3

5x2 + 1
dx

Let I =
1∫
0

2x+ 3

5x2 + 1
dx =

1∫
0

2x

5x2 + 1
dx+

1∫
0

3

5x2 + 1
dx = I1 + I2

I1 =
1∫
0

2x

5x2 + 1
dx, I2 =

1∫
0

3

5x2 + 1
dx

I1 =

1∫
0

2x

5x2 + 1
dx

=
1

5

1∫
0

10x

5x2 + 1
dx

=
1

5

1∫
0

d
dx
(5x2 + 1)

5x2 + 1
dx

=
1

5

[
log (5x2 + 1)

]1
0

=
1

5

[
log (5(1)2 + 1)− log (5(0)2 + 1)

]
=

1

5
[log 6− log 1]

=
1

5
[log 6− 0]

I1 =
1

5
[log 6]

Next,we evaluate I2

I2 =

1∫
0

3

5x2 + 1
dx

=

1∫
0

3

5(x2 + 1
5
)
dx

=
3

5

1∫
0

1

x2 + 1
5

dx

=
3

5

1∫
0

1

x2 + 1
5

dx
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By the formula:
∫

dx
x2+a2

= 1
a
tan−1

(
x
a

)
, we get,

I2 =
3

5
· 1

1/
√
5

tan−1

(
x

1/
√
5

)
=

3
√
5

5
tan−1

(√
5x
)

I2 =
3√
5

tan−1
(√

5x
)

So,

I = I1 + I2 =
1

5
[log 6] +

3√
5

tan−1
(√

5x
)

(2)

π
2∫
0

sin2 θ

(1 + cos θ)2
dθ

Sol.: Here we have to evaluate

π
2∫
0

sin2 θ

(1 + cos θ)2
dθ

Let I =

π
2∫

0

sin2 θ

(1 + cos θ)2
dθ

=

π
2∫

0

(
sin θ

1 + cos θ

)2

dθ

=

π
2∫

0

(
2 sin θ

2
· cos θ

2

2 cos2 θ
2

)2

dθ

=

π
2∫

0

(
sin θ

2

cos θ
2

)2

dθ

=

π/2∫
0

tan2 θ

2
dθ.

=

π/2∫
0

(sec2
θ

2
− 1) dθ.

=

π/2∫
0

sec2
θ

2
dθ −

π/2∫
0

dθ.

=

[
tan θ

2

1/2

]π/2
0

− [θ]
π/2
0 .

= 2

[
tan

π/2

2
− tan

0

2

]
−
[π
2
− 0
]
.

= 2tan
π

4
− π

2
.

= 2(1)− π

2
⇒ I =

4− π

2
.
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(3) Evaluate
4∫
1

f(x) dx,where f(x) =

{
2x+ 8, 1 ≤ x ≤ 2

6x, 2 < x ≤ 4

Sol.: Let,

I =

4∫
1

f(x) dx

Here, we can see that the lower limit is 1 and upper limit is 4 and the function f(x) is
defined on two parts 1 ≤ x ≤ 2 and 2 ≤ x ≤ 4.
Using the working rule of definite integration, we have

I =

∫ 4

1

f(x) dx =

∫ 2

1

f(x) dx+

∫ 4

2

f(x) dx

⇒ I =

∫ 2

1

(2x+ 8) dx+

∫ 4

2

6x dx

⇒ I =

[
2
x2

2
+ 8x

]2
1

+

[
6
x2

2

]4
2

=
[
x2 + 8x

]2
1
+
[
3x2
]4
2

⇒ I =
[(
22 + 8 · 2

)
−
(
12 + 8 · 1

)]
+
[(
3·22

)
−
(
3 · 42

)]
⇒ I = [20− 9] + [12− 48] = 11− 36 = −25

Exercise: Evaluate the following integration.

EX.1.
1∫
0

dx

2ex − 1

Sol.: Let

I =

1∫
0

dx

2ex − 1

Multiplying and dividing by e−x to the integrand we get,

I =

1∫
0

e−xdx

2e−xex − e−x

=

1∫
0

e−xdx

2− e−x

Now, here we observe that
d

dx
(2− e−x) = 0− (−e−x) = e−x

I =

1∫
0

e−xdx

2− e−x
=

1∫
0

d
dx
(2− e−x)dx

2− e−x

Using the formula of integration:
∫ f ′(x)

f(x)
dx = log |f(x)|, we get,

I =
[
log(2− e−x)

]1
0

⇒ I =
[
log(2− e−1)− log(2− e0)

]
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⇒ I =

[
log(2− 1

e
)− log(2− 1)

]
⇒ I =

[
log(

2e− 1

e
)− log 1

]
⇒ I = log

(
2e− 1

e

)
EX.2.

π
2∫
0

√
sin θ · cos5 θ dθ

Sol.: Let

I =

π
2∫

0

√
sin θ · cos5 θ dθ

For

∫
sinm x · cosn x dx

we select substitution
t = sin x when n is odd positive number,
and t = cos x when m is odd positive number.
so, we take substitution t = sin θ
⇒ dt = cos θ dθ

Further limits of the integral also change, when θ = 0 ⇒ t = sin 0 = 0 and when
θ = π

2
⇒ t = sin π

2
= 1 and cos2 θ = 1− sin2 θ ⇒ cos2 θ = 1− t2

So, we have

I =

π/2∫
0

√
sin θ · (cos2 θ)2 cos θ dθ

with the substitution we get,

⇒ I =

1∫
0

√
t · (1− t2)2 dt

⇒ I =

1∫
0

t1/2 · (1− t2)2 dt

⇒ I =

1∫
0

t1/2 · (1− 2t2 + t4) dt

⇒ I =

1∫
0

(t1/2 − 2t1/2t2 + t1/2t4) dt

⇒ I =

1∫
0

(t1/2 − 2t5/2 + t9/2) dt

⇒ I =

[
t3/2

3/2
− 2t7/2

7/2
+

t11/2

11/2

]1
0

⇒ I =

[
2t3/2

3
− 4t7/2

7
+

2t11/2

11

]1
0



61

⇒ I =

[
2(1)3/2

3
− 4(1)7/2

7
+

2(1)11/2

11

]
−

[
2(0)3/2

3
− 4(0)7/2

7
+

2(0)11/2

11

]

⇒ I =
2

3
− 4

7
+

2

11

⇒ I =
154− 132 + 42

231
=

64

231

EX.3.

π
4∫
0

dx

4 sin2 x+ 5 cos2 x

Sol.: Let

I =

π
4∫

0

dx

4 sin2 x+ 5 cos2 x

Dividing by cos2 x the denominator and numerator of the integrand, we get,

I =

π
4∫

0

sec2 x

4 tan2 x+ 5
dx

Taking substitution t = tan x ⇒ dt = sec2 x dx

Further limits of the integral also change, when x = 0 ⇒ t = tan 0 = 0 and when
x = π

4
⇒ t = tan π

4
= 1

So, we have

I =

1∫
0

dt

4t2 + 5

I =

1∫
0

dt

4(t2 + 5
4
)
=

1

4

1∫
0

dt

(t2 + (
√
5
2
)2)

By the formula:
∫

dx
x2+a2

= 1
a
tan−1

(
x
a

)
, we get,

I =
1

4
·
[

1√
5/2

tan−1

(
t√
5/2

)]1
0

⇒ I =

√
5

2

[
tan−1

(
2t√
5

)]1
0

⇒ I =

√
5

2

[
tan−1

(
2 · 1√

5

)
− tan−1

(
2 · 0√

5

)]

⇒ I =

√
5

2
tan−1

(
2√
5

)
EX.4.

π
4∫
0

secx dx
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Sol.: Let

I =

π
4∫

0

sec x dx

We know the formula
∫

secx dx = log | sec x+ tan x|, Using that here, we get,

I =

π/4∫
0

sec x dx = [log(secx+ tanx)]π/40

= [log(sec(π/4) + tan(π/4))]− [log(sec 0 + tan 0)]

=
[
log(

√
2 + 1)

]
− [log(1 + 0)]

Hence,

I =
[
log(

√
2 + 1)

]

EX.5.
5∫
3

x2

x2 − 4
dx

Sol.: Let

I =

5∫
3

x2

x2 − 4
dx

I =

5∫
3

x2 − 4 + 4

x2 − 4
dx

I =

5∫
3

x2 − 4

x2 − 4
dx+

5∫
3

4

x2 − 4
dx

I =

5∫
3

1 dx+ 4

5∫
3

1

x2 − 22
dx

I = (x)53 + 4 ·
[

1

2 · 2
log

(
x− 2

x+ 2

)]5
3

I = (5− 3) + {log
(
5− 2

5 + 2

)
− log

(
3− 2

3 + 2

)
}

I = 2 + {log
(
3

7

)
− log

(
1

5

)
}

I = 2 + log

(
15

7

)
EX.6.

1∫
0

dx√
x2 + 4x+ 3
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Sol.: Let

I =

1∫
0

dx√
x2 + 4x+ 3

I =

1∫
0

dx√
x2 + 4x+ 4− 1

I =

1∫
0

dx√
(x+ 2)2 − 1

Taking substitution y = x + 2 ⇒ dy = dx and when x = 0 ⇒ y = 2 and when
x = 1 ⇒ y = 3.

I =

3∫
2

dy√
y2 − 1

Using the formula of integration:
∫ dx√

x2 − a2
= log(x+

√
x2 − a2), we get,

I =
[
log(y +

√
y2 − 1)

]3
2

I =
[
log(3 +

√
32 − 1)

]
−
[
log(2 +

√
22 − 1)

]
I =

[
log(3 +

√
8)
]
−
[
log(2 +

√
3)
]

I = log

[
(3 + 2

√
2)

(2 +
√
3)

]
≫3.5. Integration By Parts method in case of Definite Integration.

We have studied the the integration by parts method in the previous unit which is stated
as follows: ∫

u v dx = u

(∫
v dx

)
−
∫

d

dx
(u) ·

(∫
v dx

)
dx

But in the case of the definite integral, we have

b∫
a

u v dx =

[
u

(∫
v dx

)]b
a

−
b∫

a

d

dx
(u) ·

(∫
v dx

)
dx

As for example,

Let us consider the integral

I =

1∫
0

x · ex dx

Here choosing u = x and v = ex Following the LIATE rule For the choice of the function
”u” we follow the priority order : LIATE (L: Logarithmic function, I: Inverse function,
A: Algebraic function, T: Trigonometric function, E: Exponential function.)
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Log(log x, log(x+ 1), ...)
≫ Inverse(tan−1, cos−1, sin−1, ..)
≫ Algebraic(1, x, x2, 1 + x, 2 + 7x, x3, ....)
≫ Trigonometric(sin, cos, tan, ...)
≫ Exponential(ex, ex+1, ...)

and applying the above rule, we get,

I =

[
x

(∫
ex dx

)]1
0

−
1∫

0

d

dx
(x) ·

(∫
ex dx

)
dx

I = [x · ex]10 −
1∫

0

(1) · ex dx

I =
[
1 · e1 − 0 · e0

]
− [ ex ]10

I = e− [e1 − e0] = e− (e− 1) = 1

Exercise: Evaluate the following integration.

Ex.1.
1∫
0

tan−1 x dx

Sol.: Let

I =

1∫
0

tan−1 x dx

Using the integration by parts method taking u = tan−1 x and v = 1, we get,

I =

[
tan−1 x

∫
1 dx

]1
0

−
1∫

0

d

dx
(tan−1 x) · (

∫
1 dx) dx

I =
[
x tan−1 x

]1
0
−

1∫
0

1

1 + x2
· xdx

I =
[
1 · tan−1 1− 0 · tan−1 0

]
−

1∫
0

x

1 + x2
dx

I =
[
1 · tan−1 1− 0

]
− 1

2

1∫
0

2x

1 + x2
dx

I = tan−1 1− 1

2

1∫
0

2x

1 + x2
dx

I =
π

4
− 1

2

1∫
0

d
dx
(1 + x2)

1 + x2
dx
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I =
π

4
− 1

2

[
log(1 + x2)

]1
0

I =
π

4
− 1

2

[
log(1 + 12)− log(1 + 02)

]
I =

π

4
− 1

2
log 2

Ex.2.
1/2∫
0

sin−1x

(1− x2)3/2
dx

Sol.: Let

I =

1/2∫
0

sin−1x

(1− x2)3/2
dx

Use the substitution θ = sin−1 x ⇒ dθ =
1√

1− x2
dx

Also, when x = 0 ⇒ θ = sin−1 0 = 0 and when x = 1
2

⇒ θ = sin−1(1/2) = π
6

So, with this we have,

I =

1/2∫
0

sin−1x dx

(1− x2)
√

(1− x2)

⇒ I =

π/6∫
0

θ

cos2 θ
dθ

⇒ I =

π/6∫
0

θ · sec2 θ dθ

Now, we apply the Integration by parts method with u = θ and v = sec2 θ, we get,

⇒ I =

[
θ ·
(∫

sec2 θ dθ

)]π/6
0

−
π/6∫
0

d

dθ
(θ) ·

(∫
sec2 θ dθ

)
dθ

⇒ I = [θ · (tan θ)]π/60 −
π/6∫
0

(1) · (tan θ) dθ

⇒ I =
[π
6
·
(
tan

π

6

)
− 0 · (tan 0)

]
−

π/6∫
0

tan θ dθ

⇒ I =
π

6
· 1√

3
− [ log(sec x) ]

π/6
0

⇒ I =
π

6
√
3
− [ log(secπ/6)− log(sec 0) ]

⇒ I =
π

6
√
3
− [ log(

2√
3
)− log(1) ]

⇒ I =
π

6
√
3
− log(

2√
3
)
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Ex.3.

√
2∫

0

x3ex
2
dx

Sol.: Let

I =

√
2∫

0

x3ex
2

dx

Here taking the substitution t = x2 ⇒ dt = 2x dx and when x = 0 ⇒ t = 0, x =√
2 ⇒ t = 2

With this and

I =

√
2∫

0

x2ex
2

x dx

We get,

I =

2∫
0

tet dt

Next, we apply the Integration by parts method with u = t and v = et

I =
[
t · et

]2
0
−

2∫
0

(1) · et dt

I =
[
2 · e2 − 0 · e0

]
− [ et ]20

I = [2e2]− [ e2 − e0 ]

I = 2e2 − e2 + 1 = e2 + 1

Ex.4.

π
2∫
0

x2 cos 2x dx

Sol.: Let

I =

π
2∫

0

x2 cos 2x dx

Using the integration by parts method for u = x2 and v = cos 2x, we get

I =

[
x2

(∫
cos 2x dx

)]π/2
0

−
π/2∫
0

d

dx
(x2)

(∫
cos 2x dx

)
dx

I =

[
x2 · sin 2x

2

]π/2
0

−
π/2∫
0

(2x) · sin 2x
2

dx
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I =

[
(π/2)2 · sin 2(π/2)

2
− (0)2 · sin 2(0)

2

]
−

π/2∫
0

x · sin 2x dx

I =

[
(π/2)2 · sin(π)

2
− 0

]
−

π/2∫
0

x · sin 2x dx

I = 0−
π/2∫
0

x · sin 2x dx = −
π/2∫
0

x · sin 2x dx

Once again applying the integration by parts method for u = x and v = sin 2x, we
get,

I = −
[
x

(∫
sin 2x dx

)]π/2
0

+

π/2∫
0

(1)

(∫
sin 2x dx

)
dx

I = −
[
x
− cos 2x

2

]π/2
0

+

π/2∫
0

− cos 2x

2
dx

I =

[
π/2 · − cos 2π/2

2
− 0 · − cos 2 · 0

2

]
− 1

2

π/2∫
0

cos 2x dx

I = −
[
π/2 · − cosπ

2

]
− 1

2

[
sin 2x

2

]π/2
0

I = −
[
π

2
· −(−1)

2

]
− 1

2

[
sin 2x

2

]π/2
0

I = −
[
π

2
· −(−1)

2

]
− 1

2

[
sin 2x

2

]π/2
0

I = −π

4
− 1

2

[
sin 2(π/2)

2
− sin 2(0)

2

]
I = −π

4
− 1

2

[
sin(π)

2
− sin(0)

2

]
= −π

4

Ex.5.
1∫

−1

sin3 x cos4 x dx

Sol.: Let

I =

1∫
−1

sin3 x cos4 x dx

Here, we observe that the integrand function f(x) = sin3 x cos4 x is such that
f(−x) = (sin(−x))3(cos(−x))4 = (− sinx)3(cosx)4 = − sin3 x cos4 x = −f(x) ⇒
f(−x) = −f(x)

Hence, given integrand is an odd function.
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So, by the result for an odd function:
a∫

−a

f(x) dx = 0, we have

I = 0

Ex.6.

π
4∫

−π
4

cos2 x dx

Sol.: Let

I =

π
4∫

−π
4

cos2 x dx

Here, we observe that cos is an even function so by the result for the even function:
a∫

−a

f(x)dx = 2
a∫
0

f(x)dx, we get,

I = 2

π
4∫

0

cos2 x dx

I = 2

π
4∫

0

(
1 + cos 2x

2
) dx

I =
2

2

π
4∫

0

( 1 + cos 2x ) dx

I =

(
x+

sin 2x

2

)π
4

0

I =

(
π

4
+

sin 2(π
4
)

2

)
−
(
0 +

sin 2(0)

2

)
I =

(
π

4
+

1

2

)
=

π + 2

4

2
︷︸︸︷
EX︸︷︷︸ < . If

k∫
0

dx

2 + 8x2
=

π

16
, then find k.

Sol.: Here
k∫

0

dx

2 + 8x2
=

π

16

⇒ 1

8

k∫
0

dx
1
4
+ x2

=
π

16

⇒
k∫

0

dx

x2 + 1
4

=
π

2

⇒
k∫

0

dx

x2 + 1
4

=
π

2
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Using the formula
∫ dx

x2 + a2
=

1

a
tan−1 x

a
, we get

⇒
[

1

1/2
tan−1 x

1/2

]k
0

=
π

2

⇒ 2
[
tan−1 2x

]k
0
=

π

2
⇒

[
tan−1 2x

]k
0
=

π

4

⇒
[
tan−1 2k − tan−1 (2 · 0)

]
=

π

2

⇒ tan−1 2k =
π

2
⇒ 2k = tan

π

4

⇒ 2k = 1 ⇒ k =
1

2

2
︷︸︸︷
EX︸︷︷︸ < . Prove that

2a∫
0

f(x)

f(x) + f(2a− x)
dx = a

Sol.: Let

I =

2a∫
0

f(x)

f(x) + f(2a− x)
dx

We know the result for the definite integral:
b∫
a

f(x) dx =
b∫
a

f(a+ b− x) dx, we get

2a∫
0

f(x)

f(x) + f(2a− x)
dx =

2a∫
0

f(2a− x)

f(2a− x) + f(2a− (2a− x))
dx

Therefore,

2a∫
0

f(x)

f(x) + f(2a− x)
dx =

2a∫
0

f(2a− x)

f(2a− x) + f(x)
dx

So, we have

2a∫
0

f(x)

f(x) + f(2a− x)
dx = I =

2a∫
0

f(2a− x)

f(2a− x) + f(x)
dx

2a∫
0

f(x)

f(x) + f(2a− x)
dx+

2a∫
0

f(2a− x)

f(2a− x) + f(x)
dx = 2I

2a∫
0

f(x)

f(x) + f(2a− x)
+

f(2a− x)

f(2a− x) + f(x)
dx = 2I

⇒
2a∫
0

f(x) + f(2a− x)

f(x) + f(2a− x)
dx = 2I

⇒
2a∫
0

dx = 2I

⇒ [ x ]2a0 = 2I
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⇒ [2a− 0] = 2I ⇒ 2a = 2I ⇒ I = a

Therefore,
2a∫
0

f(x)

f(x) + f(2a− x)
dx = a

2
︷︸︸︷
EX︸︷︷︸ < . If f(x) = f(a+ b− x) , Prove that

b∫
a

xf(x) dx =
(a+ b)

2

b∫
a

f(x) dx

Sol.: We know the result for definite integral as:

b∫
a

g(x) dx =

b∫
a

g(a+ b− x) dx

Here, taking g(x) = x · f(x) ⇒ g(a+ b− x) = (a+ b− x) · f(a+ b− x)

But it is given that f(x) = f(a+ b− x)

This implies, g(a+ b− x) = (a+ b− x) · f(x)

Hence,
b∫

a

x · f(x) dx =

b∫
a

(a+ b− x) · f(x) dx

⇒
b∫

a

x · f(x) dx =

b∫
a

((a+ b)− x) · f(x) dx

⇒
b∫

a

x · f(x) dx =

b∫
a

(a+ b) · f(x) dx−
b∫

a

x · f(x) dx

⇒
b∫

a

x · f(x) dx+

b∫
a

x · f(x) dx =

b∫
a

(a+ b) · f(x) dx

⇒ 2

b∫
a

x · f(x) dx = (a+ b)

b∫
a

f(x) dx

⇒
b∫

a

x · f(x) dx =
(a+ b)

2

b∫
a

f(x) dx

EXTRA EXAMPLES :

(1) Evaluate the following integration.

(a)

π
3∫
π
4

cotx dx

(b)
2∫
0

6x+ 3

x2 + 4
dx
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(c)
π∫
π
2

1− sin x

1− cos x
dx

(d)
1∫

−1

x3

a2 − x2
dx a > 1

(e)
π∫
0

sin4 x cos3 x dx

(f)
2π∫
0

sin3 x cos2 x dx

(2) Evaluate
1∫

−1

f(x) dx,where f(x) =

{
1− 2x, −1 ≤ x ≤ 0

1 + 2x, 0 ≤ x ≤ 1

(3) If
k∫
0

tanx

1 + tanx
dx =

π

4
, then find k.
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UNIT - 4: US02EMTH02
(ELECTIVE MATHS, SEM. II)

Differential Equations

Reference book : Gujarat State Board of School Textbooks ,
Standard - 12 MATHEMATICS - 2 ,( CHAPTER - 8 )

”Have you ever thought ’why should students of Biology study mathematics?’. In
the present time mathematics is being widely used. By use of mathematics, rep-
resentation of any subject becomes clear and well-defined and still the expression
becomes compact. ’Differential Equations’ is also a branch of mathematics. Most of
the branches of science and management make use of differential equations. In fact,
this branch provides one of the most powerful tools in the mathematics.In the present
chapter we shall procure an elementary information about differential equations.”

4.1 Differential Equation: Definition

The equation involving derivative/s of dependent variable with respect to the indepen-
dent variable and together with the variables is called differential equation.

More precisely if y = f(x) is the dependent variable depending on independent variable

x, then the equation involving x, y,
dy

dx
,
d2y

dx2
, .... is called differential equation.

i.e., a function F
(
x, y, dy

dx
, d2y
dx2 , .....

)
= 0.

> Practical Example of Differential Equation:-

Let us consider the problem from your own world that is Life science.
The rate of growth of bacteria is proportional to their number present at a moment(which
is practically established by the available experimental data).

Thus if at time t the number of bacteria is x then this problem can be described by a
differential equation

dx

dt
= kx

where k is a constant of proportionality.

This is an equation, to determine number of bacteria at any moment.

4.2 Order and Degree of Differential Equation

If a differential equation is written in the form of a polynomial the order of the highest
order derivative occurring in the equation is called order of the differential equation and
its power is called the degree of the differential equation.
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Exercise: Obtain the order and degree of the following differential equation.

1.
d2y

dx2
+

(
dy

dx

)3

+ xy = 0

Sol.:- The highest order derivative in the above equation is
d2y

dx2
and

its degree(power) is 1.
∴ The differential equation has order 2 and degree 1.

2.
d2y

dx2
=

[
1 +

(
dy

dx

)2
] 3

2

Sol.:- To express the above differential equation in to the polynomial form in derivatives,
taking square we get,(
d2y

dx2

)2

=

[
1 +

(
dy

dx

)2
]3

The highest order derivative in the above equation is
d2y

dx2
and

its degree(power) is 2.

∴ The differential equation has order 2 and degree 2.

3.
√
1− y2dx+

√
1− x2dy = 0

Sol.:- Expressing the above equation in the polynomial form in terms of derivatives, we
get,√
1− y2 +

√
1− x2

dy

dx
= 0

The highest order derivative in the above equation is
dy

dx
and

its degree(power) is 1.
∴ The differential equation has order 1 and degree 1.

4. sin

(
dy

dx

)
+ 5y = 9

Sol.:- Expressing the above equation in the polynomial form in terms of derivatives, we
get,

sin

(
dy

dx

)
= 9− 5y ⇒

(
dy

dx

)
= sin−1(9− 5y)

The highest order derivative in the above equation is
dy

dx
and

its degree(power) is 1.
∴ The differential equation has order 1 and degree 1.

5.
d2y

dx2
+ 3y = 0

Sol.:- The highest order derivative in the above equation is
d2y

dx2
and

its degree(power) is 1.
∴ The differential equation has order 2 and degree 1.
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6.
dy

dx
+

1

( dy
dx
)
= 5

Sol.:- To express the above differential equation in to the polynomial form in derivatives,

taking L.C.M=
dy

dx
we get,

⇒
(
dy

dx

)2

+ 1 = 5
dy

dx

The highest order derivative in the above equation is
dy

dx
and

its degree(power) is 2.

∴ The differential equation has order 1 and degree 2.

7. x+
dy

dx
=

√
1 +

(
dy

dx

)2

Sol.:- To express the above differential equation in to the polynomial form in derivatives,
taking square we get,(
x+

dy

dx

)2

= 1 +

(
dy

dx

)2

The highest order derivative in the above equation is
dy

dx
and

its degree(power) is 2.

∴ The differential equation has order 1 and degree 2.

≫→ Origin of Differential Equation:
Each family of curves have its differential equation, which is obtained by eliminating the
arbitrary constants from the given equation of the family.

We follow the simple rule for obtaining the differential equation of the given family.

If the equation of the family contains one arbitrary constant then we have to
differentiate it once, If it involves two arbitrary constants then we have to dif-
ferentiate the equation twice, and so on.

Some times it is easier to eliminate the arbitrary constants by differentiation,
but when it is not eliminated by direct differentiation then find the values of
those constants in terms of the derivative and variables then substitute into the
equation of the family.

Ex. Obtain the differential equation of family of all the parallel lines represented
by y = 2x + c with slop 2 .(c is arbitrary constant)

Sol.:- Here y = 2x+ c, differentiating with respect to x, we get

d

dx
(y) = 2

d

dx
(x) +

d

dx
(c)

⇒ dy

dx
= 2

which is the required differential equation.
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Ex. Obtain the differential equation representing all lines of family
y = mx + c .( m and c are arbitrary constants )

Sol.:- Here y = mx+ c, differentiating with respect to x, we get

d

dx
(y) = m

d

dx
(x) +

d

dx
(c)

⇒ dy

dx
= m

Further differentiating we get

⇒ d2y

dx2
= 0

which is the required differential equation.

Ex. Obtain the differential equation of family of circles having centre on x - axis
and radius 1 unit.

Sol.:- The general equation of the circle with center (a, b) and radius r is

(x− a)2 + (y − b)2 = r2

The point on x-axis have its y-coordinate=0.
As it is given here the center of the circle lies on the x-axis so its y - coordinate =0, i.e.,
(a,0) be the coordinates of center.

And r denotes the radius in the general equation, here it is given that the radius is 1,
r = 1.
So, the equation of the circle with center on x-axis and radius 1 is given by,

(x− a)2 + y2 = 1

Now, to get its differential equation we are going to differentiate it with respect to x,

By differentiating with respect to x, we get,

2(x− a)
d

dx
(x− a) + 2y

d

dx
(y) = 0

⇒ (x− a)(1− 0) + y
dy

dx
= 0

⇒ (x− a) + y
dy

dx
= 0

⇒ a = x+ y
dy

dx
Using this value of a into the equation (x− a)2 + y2 = 1, we get,

(
x− (x+ y

dy

dx
)

)2

+ y2 = 1
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⇒
(
−y

dy

dx

)2

+ y2 = 1

⇒ y2

[(
dy

dx

)2

+ 1

]
= 1

which is the required differential equation.

Ex. Obtain the differential equation of family of curves y = a sin(x + b), a and b
are arbitrary constants .

Sol.:- Here, y = a sin(x+ b) is the given equation.

Differentiating with respect to x, we get,

dy

dx
= a cos(x+ b)

d

dx
(x+ b)

⇒ dy

dx
= a cos(x+ b) · (1 + o)

⇒ dy

dx
= a cos(x+ b)

Further differentiating with respect to x, we get,

d

dx

(
dy

dx

)
= −a sin(x+ b)

d

dx
(x+ b)

⇒ d2y

dx2
= −a sin(x+ b)

But we have a sin(x+ b) = y as it is given.

So,
d2y

dx2
= −y ⇒ d2y

dx2
+ y = 0

which is the required differential equation.
4.3 Solution of the Differential Equation

Let a differential equation in variables x and y be given. If we can find a function y = f(x)
such that x, y and its derivatives identically satisfy the differential equation, the function
y = f(x) is called a solution of differential equation.

We know that if f ′(x) = F (x) then [f(x) + c]′ = F (x), where c is an arbitrary con-
stant. Thus we will get a family of solutions. The solution of a differential equation covering
all its solutions is called the general solution of the differential equation. If we can obtain
definite value of c because of given values of x, y and the derivatives, we obtain a particular
solution of the differential equation.
The conditions are called initial conditions.

Note: The general solution of a differential equation will contain as many constants
as the order of the differential equation.

Ex. Verify that y = ex, x ∈ R is a solution of the differential equation
dy

dx
= y.
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Sol.:- Here, we have y = ex. To show that it is a solution of the differential equation

dy

dx
= y

for that we have to show that if we put y = ex into the differential equation
dy

dx
= y it

should be verified/satisfied.

Let,

y = ex

Differentiating it with respect to x, we get,

d

dx
(y) =

d

dx
(ex) ⇒ dy

dx
= ex

and

y = ex

⇒ dy

dx
= y

Hence, y = ex is a solution of differential equation
dy

dx
= y.

Ex. Verify that y = sin x, x ∈ R is a solution of the differential equation
d2y

dx2
+ y = 0.

Sol.:- Here, y = sin x

Differentiating with respect to x, we get

dy

dx
= cos x

Further, differentiating the above equation with respect to x, we get

d2y

dx2
= − sinx

Also, it is provided that y = sin x

L.H.S. =
d2y

dx2
+ y = − sinx+ sin x = 0 = R.H.S.

So, it is verified that y = sin x is a solution of the differential equation
d2y

dx2
+ y = 0

Ex. Verify that y = cos x, x ∈ R is a solution of the differential equation
d2y

dx2
+ y = 0.

Sol.:- Here, y = cos x

Differentiating with respect to x, we get

dy

dx
= − sin x
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Further, differentiating the above equation with respect to x, we get

d2y

dx2
= − cosx

Also, it is provided that y = cos x

L.H.S. =
d2y

dx2
+ y = − cos x+ cos x = 0 = R.H.S.

So, it is verified that y = cos x is a solution of the differential equation
d2y

dx2
+ y = 0

Ex. Verify that y = ax+ a2,(a is arbitrary constant) is the general solution of the

differential equation

(
dy

dx

)2

+ x

(
dy

dx

)
= y.

Sol.:- Here, we have y = ax+ a2

Differentiating with respect to x-axis, we get

dy

dx
= a+ 0 ⇒ a =

dy

dx

L.H.S.=

(
dy

dx

)2

+ x

(
dy

dx

)
= (a)2 + x (a)

= ax+ a2 = y = R.H.S.

So, we have verified that y = ax+ a2 is the general solution of the differential equation(
dy

dx

)2

+ x

(
dy

dx

)
= y.

Ex. Verify that y = cx + 1
c
is the general solution of the differential equation

y

(
dy

dx

)
= x

(
dy

dx

)2

+ 1,where c is arbitrary constant.

Sol.:- Here y = cx+ 1
c
, differentiating with respect to x, we get

d

dx
(y) = c

d

dx
(x) +

d

dx
(
1

c
)

⇒ dy

dx
= c

Here we have to verify that

y

(
dy

dx

)
= x

(
dy

dx

)2

+ 1

L.H.S.=y

(
dy

dx

)
= (cx+ 1

c
) · c = c2x+ 1

R.H.S.=x

(
dy

dx

)2

+ 1 = x · (c)2 + 1 = c2x+ 1

⇒ L.H.S.=R.H.S.

Hence, it is verified that y = cx + 1
c
is the general solution of the differential equation

y

(
dy

dx

)
= x

(
dy

dx

)2

+ 1
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4.4 Differential Equation of 1st order and 1st degree

The general form of differential equation of first order and first degree is

M(x, y) +N(x, y)
dy

dx
= 0 ⇒ M(x, y)dx+N(x, y)dy = 0.

i.e.,Mdx+Ndy = 0.

Now we will discuss one of the methods to solve such equations.

4.5 Variable Separable method

This is a method of separating variables x and y. We know first order and first degree
equation is

Mdx+Ndy = 0.

If M(x, y) is a function of x alone and N(x, y) is a function of y alone the equation is
said to be in variable separable form.

We can take M = f(x) and N = f(y)

That gives the form of the equation as

f(x)dx+ g(y)dy = 0

Whose solution is obtained by taking integration as follows

∫
f(x)dx+

∫
g(y)dy = c

where c is a constant of integration.

This is known as the general solution of the given differential equation.

≪ Note : ≫ (i) c can be any arbitrary constant. According to our convenience to express solution
in a suitable form we will take c as log c, tan−1 c, e−c, ..... etc.

(ii) Variables are separable means all terms containing x form multiplier of dx and all
terms containing y form multiplier of dy.

(iii) Particular value of a constant c gives a particular solution based on some initial
conditions.

Ex. Solve the differential equation x(1+ y2)dx− y(1+ x2)dy = 0

Sol.: Here, by observing the given equation, we see that the separation method will work.

x(1 + y2)dx− y(1 + x2)dy = 0 ⇒ x

(1 + x2)
dx− y

(1 + y2)
dy = 0
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Hence, variables are separable.

Now, applying integration on both sides, we get∫
x

(1 + x2)
dx−

∫
y

(1 + y2)
dy = c1

⇒ 1

2

∫
2x

(1 + x2)
dx− 1

2

∫
2y

(1 + y2)
dy = c1

⇒
∫

2x

(1 + x2)
dx−

∫
2y

(1 + y2)
dy = 2c1

⇒
∫ d

dx
(x2 + 1)

(1 + x2)
dx−

∫ d
dy
(y2 + 1)

(1 + y2)
dy = 2c1 = c2

⇒ log(1 + x2)− log(1 + y2) = c2 = log c

⇒ log
1 + x2

1 + y2
= log c

⇒ 1 + x2

1 + y2
= c

Ex. Solve the differential equation
dy

dx
= ex+y.

Find the particular solution subject to initial condition , y(1)=1 .Also find
y(-1).

Sol.: Here, we can rewrite the equation as

dy

dx
= ex · ey ⇒ dy

ey
= ex dx ⇒ e−ydy = ex dx

i.e., variables are separable.

Applying integration on both sides, we get

∫
e−ydy =

∫
ex dx+ c1

−e−y = ex + c1 ⇒ −e−y − ex = c1

⇒ e−y + ex = −c1 = c

⇒ e−y + ex = c

which is the general solution of the given differential equation.

Now, it is given that y(1) = 1, i.e., when x = 1 we have y = 1 .

Using this initial condition into the general solution e−y + ex = c, we get

e−1 + e1 = c ⇒ 1

e
+ e = c ⇒ 1 + e2

e
= c

So the particular solution is

e−y + ex =
1 + e2

e
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Next, we wish to determine y(−1), for that put x = −1 into the above particular solution
and find the corresponding value of y.

⇒ e−y + e−1 =
1 + e2

e

⇒ e−y =
1 + e2

e
− e−1

⇒ e−y =
1 + e2

e
− 1

e

⇒ e−y =
e2

e
= e = e1 ⇒ e−y = e1 ⇒ y = −1 when x = −1.

So,
y(−1) = −1.

Ex. Solve sec2 x tan ydx + sec2 y tanxdy = 0. If y(π/4) = π/4 , then find the particular
solution of the given differential equation .

Sol.:- Here first we have to find the general solution of sec2 x tan ydx+ sec2 y tanxdy = 0

We can separate variables by dividing by ” tan x · tan y” as follows

sec2 x

tanx
dx+

sec2 y

tan y
dy = 0

Applying the integration, we get∫
sec2 x

tan x
dx+

∫
sec2 y

tan y
dy =

∫
0

∫ d
dx
(tanx)

tanx
dx+

∫ d
dy
(tan y)

tan y
dy = c1

Using the formula
∫ f ′(x)

f(x)
dx = log(f(x)) and adjusting c1 = log c,we get

log(tanx) + log(tan y) = log c

log(tan x · tan y) = log c

tanx · tan y = c

which is the required general solution.

Now, we determine the particular solution using the given condition y(π/4) = π/4

Using the above condition into the general solution,
i.e., put x = π/4 and y = π/4, we get

tan(π/4) · tan(π/4) = c ⇒ 1 · 1 = c ⇒ c = 1

⇒ tanx · tan y = 1

is the required particular solution.
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4.6 The equations which can be transformed into variable separable from:-
To do such transformations we have to use the substitution v = x+ y

EX-1: Solve
dy

dx
= (x+ y)2.

Sol.:- To transform the given equation to the variable separable form we take the substitution
v = x+ y

Differentiating with respect to x, we get

dv

dx
= 1+

dy

dx
⇒ dy

dx
=

dv

dx
− 1 using this into the given differential equation it becomes

dv

dx
− 1 = v2

⇒ dv

dx
= 1 + v2

⇒ dv

dx
= 1 + v2

Now we can see that the variables are separable as follows

dv

1 + v2
= dx

Applying the integration we get

⇒
∫

dv

1 + v2
=

∫
dx+ c

⇒ tan−1 v = x+ c ⇒ v = tan(x+ c)

Using the value of v back, we get

⇒ x+ y = tan(x+ c)

is the required solution.

(1) Solve
dy

dx
= sin(x+ y)

Sol.:- To transform the given equation to the variable separable form we take the substitution
v = x+ y

Differentiating with respect to x, we get

dv

dx
= 1+

dy

dx
⇒ dy

dx
=

dv

dx
− 1 using this into the given differential equation it becomes

dv

dx
− 1 = sin v

⇒ dv

dx
= 1 + sin v

⇒ dv

dx
= 1 + sin v

Now we can see that the variables are separable as follows

dv

1 + sin v
= dx
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Applying the integration we get

⇒
∫

dv

1 + sin v
=

∫
dx+ c

⇒
∫

1

1 + sin v
· 1− sin v

1− sin v
dv = x+ c

⇒
∫

1− sin v

1− sin2 v
dv = x+ c

⇒
∫

1− sin v

cos2 v
dv = x+ c

⇒
∫

(1− sin v) cos2 v dv = x+ c

⇒
∫
(1− sin v) sec2 v dv = x+ c

⇒
∫

sec2 vdv −
∫

sin v sec2 v dv = x+ c

⇒
∫

sec2 vdv −
∫

tan v · sec v dv = x+ c

⇒ tan v − sec v = x+ c

Using the value of v back, we get

⇒ tan(x+ y)− sec(x+ y) = x+ c

is the required solution.
EXTRA EXAMPLES :

(1) Obtain the order and degree of the following differential equation.

(a) x+
dy

dx
=

√
1 +

(
dy

dx

)2

(b) y = x
dy

dx
+ 3

√
1 +

(
dy

dx

)2

(c)
d2y

dx2
+

dy

dx
+ ex = 0

(d)
3

√
d2y

dx2
=

√
dy

dx

(e)
d2y

dx2
+ sin(

dy

dx
) + y = 0

(f) (
d2y

dx2
)2 + (

dy

dx
)3 + logy = 0

(2) Verify that y = x2 + cx(c is arbitrary constant) is the general solution of the differential
equation xy′ = x2 + y.

(3) Verify that y = (x + c)e−1 is the general solution of the differential equation
dy

dx
+ y =

e−x,where c is arbitrary constant.

(4) Find the differential equation of the following family of the curves , where a and b are
arbitrary constants :
(a) x2 + y2 = a2

(b) x2 − y2 = a2

(c)
x

a
+

y

b
= 1
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(d)
x2

a2
+

y2

b2
= 1

(e) (y − b)2 = 4(x− a)
(f) y = ax3

(5) Solve the following differential equations . Also find the particular solution where the
initial conditions are given .
(a) (1 + x2)dy = xydx

(b) y(1 + ex)dy = (y + 1)exdx

(c) 5
dy

dx
= exy4

(d) x cos2 ydx = y cos2 xdy

(e) xdy + ydx = xydx, y(1) = 1

(f) xy
dy

dx
= y + 2, y(2) = 0


